
Code restructuring to improve performance
in WRF performance on Intel Xeon Phi

John Michalakes
UCAR Visiting Scientist

Naval Research Laboratory, Marine Meteorology Division

Los Alamos National Laboratory
1 June 2016

ESMF webinar, 12/14/2016

2

Outline

• Hardware and software
– Knights Landing overview
– Roofline and next-generation HPC

• Optimizing for KNL
– WSM5 Microphysics
– RRTMG Radiative Transfer

• Summary

3

Hardware: Xeon Multi/Many-core Computing Platforms

• Intel Xeon Phi 7250 (Knights Landing) announced at ISC’16 in June
– 14 nanometer feature size, > 8 billion transistors
– 68 cores, 1.4 GHz modified “Silvermont” with out-of-order instruction execution
– Two 512-bit wide Vector Processing Units per core
– Peak ~3 TF/s double precision, ~6 TF/s single precision
– 16 GB MCDRAM (on-chip) memory, > 400 GB/s bandwidth
– “Hostless” – no separate host processor and no “offload” programming
– Binary compatible ISA (instruction set architecture)

4

Optimizing for Intel Xeon Phi

• Most work in MIC programming involves optimization to achieve best
share of peak performance

– Parallelism:
• KNL has up to 288 hardware threads (4 per core) and a total of more than 2000

floating point units on the chip
• Exposing coarse, medium and especially fine-grain (vector) parallelism in

application to efficiently use Xeon Phi
– Locality:

• Reorganizing and restructuring data structures and computation to improve
data reuse in cache and reduce floating point units idle-time waiting for data:
memory latency

• Kernels that do not have high data reuse or that do not fit in cache require high
memory bandwidth

• The combination of these factors affecting performance on the Xeon Phi (or
any contemporary processor) can be characterized in terms of computational
intensity, and conceptualized using The Roofline Model

Optimizing for Intel Xeon Phi

• Roofline Model of Processor Performance
– Bounds application performance as a function

of computational intensity – the number of
floating point operations per byte moved
between the processor and a level of the
memory hierarchy.

Williams, S. W., A. Waterman, D. Patterson.
Electrical Engineering and Computer Sciences, University of California at Berkeley
Technical Report No. UCB/EECS-2008-134. October 17, 2008

computational intensity

*Sometimes referred to as:
Arithmetic intensity (registers→L1): largely algorithmic
Operational intensity (LLC→DRAM): improvable

ac
hi

ev
ab

le
 p

er
fo

rm
an

ce

Empirical Roofline Toolkit
https://crd.lbl.gov/departments/computer-

science/PAR/research/roofline/

Thanks: Doug Doerfler, LBNL

6

Optimization Toolbox

• Code and data restructuring
– Static array/loop dimensions
– Tiling + thread-local arrays (statically sized)
– Modify loops to tile over more smaller pieces of domain
– Fusing loops (beyond what compiler is able to do)
– Thread task interleaving
– Recompute rather than table lookups
– Functional Fusion, Pipelining, Concurrency

7

Optimization Toolbox

• Code and data restructuring
– Static array/loop dimensions
– Tile to increase concurrency and locality

• Recall: WRF tiles each MPI patch for threads and smaller working sets
• But original design didn’t go far enough – threads compute shared data
• Non-contiguous vectors, false-sharing, etc.

- Hybrid MPI/OpenMP was rarely a win over straight MPI. Atine to
offset copying into and out of tile-sized arrays

• Functional fusion can provide even more work and reuse
– Storage order/loop nesting order to expose vectorizable dimensions

(may involved “lowering” loops down the call tree)
– Fusing loops (beyond what compiler is able to do)
– Increase concurrency by tiling over more smaller pieces of domain
– Thread task interleaving
– Recompute rather than table lookups

• Different algorithms (hardest)

8

Optimization Toolbox

• Code and data restructuring
– Static array/loop dimensions
– Tile to increase concurrency and locality

• Recall: WRF tiles each MPI patch for threads and smaller working sets
• But original design didn’t go far enough – threads compute shared data
• Non-contiguous vectors, false-sharing, etc.

- Hybrid MPI/OpenMP was rarely a win over straight MPI. Atine to
offset copying into and out of tile-sized arrays

• Functional fusion can provide even more work and reuse
– Storage order/loop nesting order to expose vectorizable dimensions

(may involved “lowering” loops down the call tree)
– Fusing loops (beyond what compiler is able to do)
– Increase concurrency by tiling over more smaller pieces of domain
– Thread task interleaving
– Recompute rather than table lookups

• Different algorithms (hardest)

9

Optimization Toolbox

• Code and data restructuring
– Static array/loop dimensions
– Tiling + thread-local arrays (statically sized)

• Continuous vectors within thread-local arrays
• Helps shrink and align working set for cache and vector
• Avoids false sharing between threads
• Assumes enough work within routine to offset copying into and out of tile-

sized arrays
• Continuous vectors Storage order/loop nesting order to expose

vectorizable dimensions (may involved “lowering” loops down the call
tree)

– Fusing loops (beyond what compiler is able to do)
– Increase concurrency by tiling over more smaller pieces of domain
– Thread task interleaving
– Recompute rather than table lookups

• Different algorithms (hardest)

10

Optimization Toolbox

• Code and data restructuring
– Static array/loop dimensions
– Tiling + thread-local arrays (statically sized)
– Collapse and tile outer loops for more thread parallelism

• May require “lowering” the outer loop from higher in call tree

!$OMP PARALLEL DO
DO J = jts, jte

subroutine(j,)
DO i = its,ite

...

!$OMP PARALLEL DO
DO ichunk = 1,((1+(ite-its+1)/CHUNK)*CHUNK)*(jte-jts+1),CHUNK

subroutine(ichunk,)
DO i = 1, CHUNK

...

1D parallel 2D parallel

(Note: there is also an OMP COLLAPSE directive that can be
used if loop nesting is local to the subroutine)

11

Optimization Toolbox

• Code and data restructuring
– Static array/loop dimensions
– Tiling + thread-local arrays (statically sized)
– Modify loops to tile over more smaller pieces of domain
– Fusing loops (beyond what compiler is able to do)

• Foster reuse of arrays touched repeatedly in outer (k) loop
• Remove temporary arrays, reduce memory footprint
• Improved cache and register utilization

SUBROUTINE (...)
DO k = kts,kte

DO i = its,ite
DO k = kts,kte

DO i = its,ite
...

SUBROUTINE (...)
DO k = kts,kte

DO i = its,ite
DO i = its,ite
DO I = its,ite

...

12

Optimization Toolbox

• Code and data restructuring
– Static array/loop dimensions
– Tiling + thread-local arrays (statically sized)
– Modify loops to tile over more smaller pieces of domain
– Fusing loops (beyond what compiler is able to do)
– Thread task interleaving
– Recompute rather than table lookups

13

Example 1: WSM5 Microphysics

• Predict five hydrometrics with
thermodynamic feedback to model

• Largest physics component of model
cost (next is radiation)

~25% of Jan. 2000 30km workload
~9% of CONUS 12km workload

• Logically column wise but called for a
west-east strip of columns at a time

• Standalone kernel adapted to GPUs
and Xeon Phi

– Michalakes and Vachharajani, 2009
– Mielikainen et al. 2012
– Gokhale and Meadows, 2016:

https://software.intel.com/en-us/articles/whatever-the-
weather-the-intel-five-step-framework-for-code-
modernization

Improved GPU/CUDA Based Parallel Weather and Research Forecast (WRF) Single Moment 5-Class (WSM5) Cloud Microphysics.
J. Mielikainen, B. Huang, H-L. A. Huang, and M.D. Goldberg. IEEE JSTARS, Vol. 5, No. 4, Aug. 2012 and personal communication*

14

WSM5 Microphysics

• Predict five hydrometrics with
thermodynamic feedback to model

• Largest physics component of model
cost (next is radiation)

~25% of Jan. 2000 30km workload
~9% of CONUS 12km workload

• Logically column wise but called for a
west-east strip of columns at a time

• Standalone kernel adapted to GPUs
and Xeon Phi

– Michalakes and Vachharajani, 2009
– Mielikainen et al. 2012
– Gokhale and Meadows, 2016:

https://software.intel.com/en-us/articles/whatever-the-
weather-the-intel-five-step-framework-for-code-
modernization

!$OMP PARALLEL DO
DO <over tiles>

CALL WSM5

SUBROUTINE WSM5
DO J = jts, jte

CALL WSM52D

SUBROUTINE WSM52D
DO k = kts,kte

DO i = its,ite
DO k = kts,kte

DO i = its,ite
...

thread
parallel

vector
parallel

a.

b.

c.

a.

b.

c.

WSM5 Microphysics

Hi
gh

er
 is

be
tt

er

Optimization for Xeon Phi

PhiHost processor
Intel Xeon Sandybridge

8 cores

• Performance analysis showed
– Insufficient thread parallelism
– Inadequate vectorization from

misalignment and loop peeling
– Memory latency bound and not

saturating memory bandwidth
• Optimizations

1. Break outer loop over j into small
chunks. More thread parallelism;
smaller footprint per thread.

2. Compute using thread-private
statically sized arrays. Improved
vectorization.

3. Combine/eliminate temporaries to
reduce footprint from 100KB 
60KB thread. More threads/core
hide memory latency

4. asdf.

WSM5 Microphysics

• Performance analysis showed
– Insufficient thread parallelism
– Inadequate vectorization from

misalignment and loop peeling
– Memory latency bound and not

saturating memory bandwidth
• Optimizations

1. Lower OpenMP loop; collapse i
and j loops over 16-cell chunks.

2. Compute using thread-private
statically sized arrays. Improved
vectorization.

3. Combine/eliminate temporaries to
reduce footprint from 100KB 
60KB thread. More threads/core
hide memory latenc

4. asdfy.

Optimization for Xeon Phi

!$OMP PARALLEL DO
DO <over tiles>

CALL WSM5

SUBROUTINE WSM5
DO J = jts, jte

CALL WSM52D(t, q, …)

SUBROUTINE WSM52D(t, q, …)
DO k = kts,kte

DO i = its,ite
DO k = kts,kte

DO i = its,ite
...

Original

Original

WSM5 Microphysics

• Performance analysis showed
– Insufficient thread parallelism
– Inadequate vectorization from

misalignment and loop peeling
– Memory latency bound and not

saturating memory bandwidth
• Optimizations

1. Lower OpenMP loop; collapse i
and j loops over 16-cell chunks.
More thread parallelism; smaller
footprint per thread.

2. Compute using thread-private
statically sized arrays. Improved
vectorization.

3. Combine/eliminate temporaries to
reduce footprint from 100KB 
60KB thread. More threads/core
hide memory latenc

4. asdfy.

Optimization for Xeon Phi

!$OMP PARALLEL DO
DO <over tiles>

CALL WSM5

SUBROUTINE WSM5
DO J = jts, jte

CALL WSM52D(t, q, …)

SUBROUTINE WSM52D(t, q, …)
DO k = kts,kte

DO i = its,ite
DO k = kts,kte

DO i = its,ite
...

CALL WSM5

SUBROUTINE WSM5
!$OMP PARALLEL DO
DO ichunk = 1,((1+(ite-its+1)/CHUNK)*CHUNK)*(jte-jts+1),CHUNK

<copy input into local array>
CALL WSM52D ! for one 16 column-wide chunk

SUBROUTINE WSM52D
#define its 1
#define ite 16

DO k = kts,kte
DO i = its,ite

DO k = kts,kte
DO i = its,ite

...

vector parallel

Original

Modified

Modified

OMP loop
moved from
model into

physics
routineOM

WSM5 Microphysics

• Performance analysis showed
– Insufficient thread parallelism
– Inadequate vectorization from

misalignment and loop peeling
– Memory latency bound and not

saturating memory bandwidth
• Optimizations

1. Lower OpenMP loop; collapse i
and j loops over 16-cell chunks.
More thread parallelism; smaller
footprint per thread.

2. Compute using thread-private
statically sized arrays. Improve
vectorization.

3. Combine/eliminate temporaries to
reduce footprint from 100KB 
60KB thread. More threads/core
hide memory late

4. asdfncy.

Optimization for Xeon Phi

!$OMP PARALLEL DO
DO <over tiles>

CALL WSM5

SUBROUTINE WSM5
DO J = jts, jte

CALL WSM52D(t, q, …)

SUBROUTINE WSM52D(t, q, …)
DO k = kts,kte

DO i = its,ite
DO k = kts,kte

DO i = its,ite
...

CALL WSM5

SUBROUTINE WSM5
!$OMP PARALLEL DO
DO ichunk = 1,((1+(ite-its+1)/CHUNK)*CHUNK)*(jte-jts+1),CHUNK

tloc ← t ; qloc ← q ; …
CALL WSM52D(tloc, qloc, …)

SUBROUTINE WSM52D
#define its 1
#define ite 16

DO k = kts,kte
DO i = its,ite

DO k = kts,kte
DO i = its,ite

...

Original

vector parallel

Modified

WSM5 Microphysics

• Performance analysis showed
– Insufficient thread parallelism
– Inadequate vectorization from

misalignment and loop peeling
– Memory latency bound and not

saturating memory bandwidth
• Optimizations

1. Lower OpenMP loop; collapse i
and j loops over 16-cell chunks.
More thread parallelism; smaller
footprint per thread.

2. Compute using thread-private
statically sized arrays. Improve
vectorization.

3. Combine/eliminate temporaries to
reduce footprint from 100KB 
60KB thread. More threads/core
hide memory latency.

4. asdf

Optimization for Xeon Phi

Hi
gh

er
 is

be
tt

er
Effort optimizing for Phi benefits host

WSM5 Microphysics

• Performance analysis showed
– Insufficient thread parallelism
– Inadequate vectorization from

misalignment and loop peeling
– Memory latency bound and not

saturating memory bandwidth
• Optimizations

1. Lower OpenMP loop; collapse i
and j loops over 16-cell chunks.
More thread parallelism; smaller
footprint per thread.

2. Compute using thread-private
statically sized arrays. Improve
vectorization.

3. Fuse loops, combine/eliminate
temporaries to reduce footprint
from 100KB  60KB thread.
Better fit to L2 cache.mory
latency.

Optimization for Xeon Phi

!$OMP PARALLEL DO
DO <over tiles>

CALL WSM5

SUBROUTINE WSM5
DO J = jts, jte

CALL WSM52D(t, q, …)

SUBROUTINE WSM52D(t, q, …)
DO k = kts,kte

DO i = its,ite
DO k = kts,kte

DO i = its,ite
...

CALL WSM5

SUBROUTINE WSM5
!$OMP PARALLEL DO
DO ichunk = 1,((1+(ite-its+1)/CHUNK)*CHUNK)*(jte-jts+1),CHUNK

tloc ← t ; qloc ← q ; …
CALL WSM52D(tloc, qloc, …)

SUBROUTINE WSM52D
#define its 1
#define ite 16

DO k = kts,kte
DO i = its,ite
DO i = its,ite
DO I = its,ite

...

Original

vector parallel

Modified

WSM5 Microphysics

• Performance analysis showed
– Insufficient thread parallelism
– Inadequate vectorization from

misalignment and loop peeling
– Memory latency bound and not

saturating memory bandwidth
• Optimizations

1. Lower OpenMP loop; collapse i
and j loops over 16-cell chunks.
More thread parallelism; smaller
footprint per thread.

2. Compute using thread-private
statically sized arrays. Improve
vectorization.

3. Fuse loops, combine/eliminate
temporaries to reduce footprint
from 100KB  60KB thread.
Better fit to L2 cache.mory
latency.

Optimization for Xeon Phi

Effort optimizing for Phi benefits host

Loop nesting and Architecture Agnosticism

• CPU wants fine-grained
(vector) parallelism over
innermost loops

!$acc parallel loop
do i
do k

enddo
do k

enddo
do k

enddo
enddo
!$acc end parallel loop

do k
!dir$ vector
do i
enddo

enddo
do k
!dir$ vector
do i
enddo

enddo
do k
!dir$ vector
do i
enddo

enddo

• GPU wants fine-grained
(thread) parallelism over
outermost loops

• Interation over i-dimension
may not be visible within
subroutine

• There may be depend-
encies that prevent simple
inversion of loops

• Scalar temporaries may
need to be promoted to
vectors

Rapid Radiative Transfer Model (RRTMG*)

• Accurate calculation of fluxes and
cooling rates from incoming (shortwave)
and outgoing (longwave) radiation

– Significant computational cost
– Load imbalance (day/night and cloud

fraction)
– Coded as 1-D vertical columns but this

dimension does not vectorize
• Used in many weather and climate

models
– NCAR WRF
– NCAR CAM5 and CESM1
– NASA GEOS-5
– NOAA NCEP GFS, CFS, RUC
– ECMWF IFA and ERA40
– ECHAM5

https://www.aer.com/science-research/atmosphere/radiative-transfer

One column of a weather or climate model domain

(*Iacono et al. JGR, 2008; Mlawer et al., JGR, 1997)

No
Vector!

Michalakes, Iacono and Jessup. Optimizing Weather Model Radiative Transfer Physics for Intel's Many
Integrated Core (MIC) Architecture. Parallel Processing Letters. World Scientific. Accepted May, 2016.

Restructuring RRTMG in NMM-B

• Concurrency and locality
– Original RRTMG called in

OpenMP threaded loop over
South-North dimension

– Rewrite loop to iterate over
tiles in two dimensions

– Dynamic thread scheduling
• Vectorization

– Originally vertical pencils
– Extend inner dimension of

lowest-level tiles to width of
SIMD unit on KNC

– Static definition of VECLEN

west -- east

call tree

Restructuring RRTMG in NMM-B

• Concurrency and locality
– Original RRTMG called in

OpenMP threaded loop over
South-North dimension

– Rewrite loop to iterate over
tiles in two dimensions

– Dynamic thread scheduling
• Vectorization

– Originally vertical pencils
– Extend inner dimension of

lowest-level tiles to width of
SIMD unit on KNC

– Static definition of VECLEN

26

Performance results: RRTM Kernel on Xeon
Phi and host Xeon (SNB)

1.2x on Xeon

3.5x on KNC

Effect of Optimizations on RRTMG Kernel

• Improvement
– 2.8x Overall

• 5.3x in SWRAD
• 0.75x in LWRAD (degraded)

• Increasing vector length results in
– 2.5x increase in working set size from

407KB to 1034KB per thread
– 4x increase in L2 misses which Task

Interleaving reduced by 30% in SWRAD

• Memory traffic
– Increased from 59 to 124 GB/s, short of

saturation
– Key bottlenecks

• Memory latency (not bandwidth)
• Instruction latency on KNC

Michalakes, Iacono and Jessup. Optimizing Weather Model Radiative Transfer Physics for Intel's Many
Integrated Core (MIC) Architecture. Parallel Processing Letters. World Scientific. December 2016

Higher-Level Transformations

• Functional Fusion
• Pipelineing
• Concurrency

“Taking the Weather Research and Forecasting (WRF) Model to Petascale”
Snavely, Droegemeier, Loft, Michalakes, Vachharajani. NSF OCI 07-559
proposal number 0748962. July, 2007.

29

Summary

• Restructuring for performance
– Parallelism – provide as much work as possible to > 2000 fp units per

processor
• Increase available thread-level parallelism

– Thread over multiple dimensions
– Nested OpenMP regions (teams)

• Expose available fine-grained parallelism
– Reordering loop nesting, through subroutine boundaries if needed

– Computational Intensity – perform as much work as possible on operands
brought from memory

• Tiling, local statically defined data structures
• Array of Structures (AoS) versus Structure of Arrays (SoA)
• Loop unrolling, fusion
• Functional fusion and pipelining

• Tradeoff between software “–ilities” and maximum performance

	Code restructuring to improve performance in WRF performance on Intel Xeon Phi
	Outline
	Hardware: Xeon Multi/Many-core Computing Platforms
	Optimizing for Intel Xeon Phi
	Optimizing for Intel Xeon Phi
	Optimization Toolbox
	Optimization Toolbox
	Optimization Toolbox
	Optimization Toolbox
	Optimization Toolbox
	Optimization Toolbox
	Optimization Toolbox
	Example 1: WSM5 Microphysics
	WSM5 Microphysics
	WSM5 Microphysics
	WSM5 Microphysics
	WSM5 Microphysics
	WSM5 Microphysics
	WSM5 Microphysics
	WSM5 Microphysics
	WSM5 Microphysics
	Loop nesting and Architecture Agnosticism
	Rapid Radiative Transfer Model (RRTMG*)
	Restructuring RRTMG in NMM-B
	Restructuring RRTMG in NMM-B
	Performance results: RRTM Kernel on Xeon Phi and host Xeon (SNB)
	Effect of Optimizations on RRTMG Kernel
	Higher-Level Transformations
	Summary

