
Earth System Modeling Framework

DRAFT ESMF Requirements

ESMF Joint Specification Team: V. Balaji, Tom Bettge, Byron Boville, Tony Craig, Carlos Cruz,
Arlindo da Silva, Cecelia DeLuca, Brian Eaton, Bob Hallberg, Chris Hill, Mark Iredell, Rob

Jacob, Phil Jones, Brian Kauffman, Jay Larson, John Michalakes, David Neckels, Jim Rosinski,
Shepard Smithline, Max Suarez, Weiyu Yang, Mike Young, Leonid Zaslavsky

17th June 2002

NASA Earth Science Technology Office
Computational Technologies Project
CAN 00-OES-01
http://www.esmf.ucar.edu

Contents

1 Synopsis 19

I General Requirements 20

2 Target codes and review team 20

3 Introduction 21

4 Project vision 21

5 Scope 22

6 ESMF superstructure 23

7 ESMF infrastructure 23
7.1 Fields and grids . 24

7.1.1 Fields . 24
7.1.2 Gridded and observational data . 24
7.1.3 Grid operations . 24

7.2 Utility infrastructure . 25
7.2.1 Communication primitives . 25
7.2.2 Generic machine interface . 25
7.2.3 I/O . 25
7.2.4 Performance profiling . 25
7.2.5 Time management . 25
7.2.6 Error handling . 25

7.3 Future plans . 26

8 Organization and conventions of detailed requirements chapters 26
8.1 Requirement attributes . 26

9 Framework-wide requirements 28

GR1 Computational requirements 28
GR1.1 Language bindings . 28

GR1.1.1 Fortran 90 interface . 28
GR1.1.2 C++ interface . 28
GR1.1.3 C interface . 28

GR1.2 Platforms . 28
GR1.2.1 IBM SP . 28
GR1.2.2 SGI Origin . 29
GR1.2.3 Compaq ES . 29
GR1.2.4 PC Linux platforms (including cluster) . 29
GR1.2.5 Sun-Solaris . 29
GR1.2.6 Vector machines running Unix . 29

GR1.3 Performance . 29
GR1.4 Precision . 29
GR1.5 Runtime configurability . 30

GR1.5.1 Configurable decomposition . 30
GR1.5.2 Configurable resolution . 30

1

GR1.5.3 Configurable paths and directories . 30
GR1.6 Bit-reproducibility . 30

GR1.6.1 Parallel bit-reproducibility . 31
GR1.6.2 Bit-reproducibility on identical configurations . 31
GR1.6.3 Non bit-reproducing fast option . 31

GR1.7 Error handling . 31
GR1.8 Parallel race-condition error handling . 31
GR1.9 Modularity . 32
GR1.10 Extensibility . 32
GR1.11 Flexibility . 32
GR1.12 Documentation . 32
GR1.13 Systematic build, test, packaging . 33
GR1.14 Compatability with batch execution . 33
GR1.15 Compatability with interactive execution . 33
GR1.16 Compatability with ensemble methods . 33
GR1.17 Compatability with multi-institution, multi-component simulations 33
GR1.18 Ease of adoption . 34

GR2 Maintenance and support requirement 34

GR3 Integrated resource monitoring and tracking 34

References 35

II Superstructure: Control 36

1 Authors, target codes and review team 36

2 Introduction 36

3 Background 36
3.1 Location . 37
3.2 Scope . 37
3.3 Summary . 37
3.4 Examples . 38

4 Control requirements 45

CTL1 The control element 45
CTL1.1 Control as main program . 45
CTL1.2 Control as subroutine . 45
CTL1.3 SPMD . 45
CTL1.4 MPMD . 45
CTL1.5 Parallelism . 45
CTL1.6 Components within address space . 46
CTL1.7 Components outside address space . 46
CTL1.8 Customized bindings . 46
CTL1.9 Automatic binding of tasks to resources . 46
CTL1.10Write and restore from restart state . 46
CTL1.11Restore and reconfigure . 47

2

CTL2 Computational resource management 47
CTL2.1 Global PE list . 47
CTL2.2 Query PE attributes . 47

CTL2.2.1 ID for PEs . 47
CTL2.2.2 Memory node ID . 47
CTL2.2.3 Addressable node ID . 48
CTL2.2.4 Processing node ID . 48
CTL2.2.5 Other machine attributes . 48

CTL2.3 Creating PE lists . 48
CTL2.3.1 Exact specification . 48
CTL2.3.2 Length specification . 48
CTL2.3.3 “Free” specification . 49
CTL2.3.4 Memory node affinity . 49
CTL2.3.5 Addressable node affinity . 49
CTL2.3.6 Processing node affinity . 49
CTL2.3.7 Component affinity . 49
CTL2.3.8 Compact PE list . 50
CTL2.3.9 Spawning of PE lists . 50
CTL2.3.10 Complementary PE lists . 50
CTL2.3.11 Modify PE list request . 50

CTL3 Memory management 50
CTL3.1 Mapped memory region for data sharing . 51

CTL4 Component initiation 51
CTL4.1 Instantiation . 51

CTL5 Component termination 51
CTL5.1 Termination . 51
CTL5.2 Release PE list . 51
CTL5.3 Component disappearance . 52

CTL6 Component scheduling 52
CTL6.1 By timestep . 52
CTL6.2 By time . 52
CTL6.3 By alarm . 52

CTL7 Cross-component scheduling 52
CTL7.1 Exchange scheduling . 53
CTL7.2 Serial execution . 53
CTL7.3 Concurrent execution . 53
CTL7.4 Forward coupling timestep . 53
CTL7.5 Backward coupling timestep . 53
CTL7.6 Forward-backward . 54

CTL8 Cross-component exchange 54
CTL8.1 Explicit exchange . 54
CTL8.2 Implicit exchange . 54

CTL9 Cross-component signals 54
CTL9.1 Checkpoint request . 55
CTL9.2 Data request . 55

3

CTL10Syntax 55
CTL10.1Common syntax across platforms . 55
CTL10.2Performance . 55

III Superstructure: Components 56

1 Authors, target codes and review team 56

2 Component background 56
2.1 Location . 56
2.2 Scope . 56

CGC1Component requirements 58

CGC2 Components 58
CGC2.1 Component names . 58
CGC2.2 Creation . 58

CGC2.2.1 Standard creation . 58
CGC2.2.2 Creation based on replication . 58
CGC2.2.3 Creation of subcomponents . 58

CGC2.3 Interaction with subcomponents . 58
CGC2.4 Deletion . 59
CGC2.5 Operations . 59

CGC2.5.1 Initialize . 59
CGC2.5.2 Run . 59
CGC2.5.3 Halt . 59
CGC2.5.4 Prepare output exchange packets . 59
CGC2.5.5 Accept input exchange packets . 60
CGC2.5.6 Write and restore from restart . 60

CGC2.6 Queries . 60
CGC2.6.1 Query name . 60
CGC2.6.2 Query layout . 60
CGC2.6.3 Query run status . 60
CGC2.6.4 Query subcomponent layout . 61
CGC2.6.5 Query import state . 61
CGC2.6.6 Query export state . 61
CGC2.6.7 Query state summary . 61

CGC2.7 Query exchange packets . 61
CGC2.7.1 Query input datasets . 62
CGC2.7.2 Query compute parameters . 62
CGC2.7.3 Consolidated query responses . 62

CGC3 Application components 62
CGC3.1 Application initialize operation . 62
CGC3.2 Queries . 63

CGC3.2.1 Query case name . 63
CGC3.2.2 Query case date . 63

4

CGC4 Gridded components 63
CGC4.1 Gridded components have one or more associated grids . 63
CGC4.2 Creation . 63
CGC4.3 Queries . 63

CGC4.3.1 Query grids . 63
CGC4.3.2 Query default grid . 64

CGC5 Coupler components 64
CGC5.1 Coupler run operation . 64

CGC5.1.1 Coupling operation limited to two components . 64
CGC5.1.2 Unlimited number of coupling operations . 64

CGC6 General computational requirements 65
CGC6.1 Validity checking . 65
CGC6.2 Compute overhead . 65

IV Infrastructure Fields and Grids: Fields 66

1 Authors, target codes and review team 66

2 Background 66
2.1 Location . 66
2.2 Scope . 66

3 Field summary of requirements 66

4 Field requirements 67

FLD1 Fields 67
FLD1.1 Creation . 67

FLD1.1.1 Creation with data allocation . 67
FLD1.1.2 Creation with external data . 67
FLD1.1.3 Creation without data . 67
FLD1.1.4 Creation by indexing an existing field . 67
FLD1.1.5 Creation with remap . 67
FLD1.1.6 Creation by weighted combination . 68

FLD1.2 Local memory layout . 68
FLD1.3 Deletion . 68
FLD1.4 Attributes . 68

FLD1.4.1 Default attributes . 68
FLD1.4.2 Recommended attributes . 69
FLD1.4.3 Add and delete attributes . 69
FLD1.4.4 Copy attributes . 69
FLD1.4.5 Collective assignment of attributes . 69

FLD1.5 Operations . 69
FLD1.5.1 Remap data . 69
FLD1.5.2 Return grid . 70
FLD1.5.3 Return local memory layout . 70
FLD1.5.4 Direct data access . 70
FLD1.5.5 Data access via copy . 70
FLD1.5.6 Set . 70

5

FLD1.5.7 Write and restore from restart . 71
FLD1.6 Queries . 71

FLD1.6.1 Query name . 71
FLD1.6.2 Query number of dimensions . 71
FLD1.6.3 Query attributes . 71
FLD1.6.4 Query attributes by name . 71
FLD1.6.5 Query number of attributes . 71
FLD1.6.6 Query presence of data . 72
FLD1.6.7 Query number of local/global cells or gridpoints . 72

FLD2 Bundles 72
FLD2.1 Creation . 72

FLD2.1.1 Creation using field list . 72
FLD2.1.2 Creation by indexing an existing bundle . 72
FLD2.1.3 Creation with remap . 72

FLD2.2 Local memory layout . 73
FLD2.3 Deletion . 73
FLD2.4 Operations . 73

FLD2.4.1 Remap data . 73
FLD2.4.2 Insert and remove field . 73
FLD2.4.3 Direct data access . 73
FLD2.4.4 Data access via copy . 74
FLD2.4.5 Set . 74
FLD2.4.6 Return field(s) . 74
FLD2.4.7 Return grid . 74
FLD2.4.8 Return local memory layout . 74
FLD2.4.9 Pack bundle . 74
FLD2.4.10 Write and restore from restart . 75

FLD2.5 Queries . 75
FLD2.5.1 Query bundle name . 75
FLD2.5.2 Query field names . 75
FLD2.5.3 Query number of fields . 75
FLD2.5.4 Query number of local/global cells or gridpoints . 75

FLD3 Field and bundle I/O 75
FLD3.1 Write . 75
FLD3.2 Set destination . 76
FLD3.3 Set write frequency . 76
FLD3.4 Write indexed values . 76
FLD3.5 Set precision . 76

FLD4 General computational requirements 76
FLD4.1 Validity checking . 76

V Infrastructure Fields and Grids: Physical Grids 78

1 Authors, target codes and review team 78

6

2 Background 78
2.1 Location . 78
2.2 Scope . 78
2.3 Examples . 79

3 Physical grid requirements 80

PG1 Physical locations 80
PG1.1 Horizontal locations . 80

PG1.1.1 Horizontal coordinates . 80
PG1.1.2 Horizontal locations may be points . 80
PG1.1.3 Horizontal locations may be polygonal regions . 80
PG1.1.4 Horizontal regions may have central points . 80
PG1.1.5 Horizontal regions may be circular . 81
PG1.1.6 Paths between grid locations may be specified . 81

PG1.2 Vertical locations . 81
PG1.2.1 Vertical coordinates . 81
PG1.2.2 Vertical locations may be points . 82
PG1.2.3 Vertical locations may be regions . 82
PG1.2.4 Vertical regions have central points . 82
PG1.2.5 Vertical locations may have radii of influence . 82
PG1.2.6 Vertical locations may include lopped cells . 82

PG2 Location streams 82
PG2.1 Location streams may be created . 83
PG2.2 Location streams may be destroyed . 83
PG2.3 Location streams may be copied . 83
PG2.4 Reading streams . 83
PG2.5 Writing streams . 83
PG2.6 Background grid . 84
PG2.7 Location stream attributes . 84

PG2.7.1 Fixed length location streams . 84
PG2.7.2 Extensible length location streams . 84
PG2.7.3 Global attributes: location stream name . 84
PG2.7.4 Location stream registry . 84
PG2.7.5 Global attributes: number of dimensions . 85
PG2.7.6 Global attributes: dimension names . 85
PG2.7.7 Global attributes: dimension units . 85
PG2.7.8 Global attributes: text or numeric attributes . 85
PG2.7.9 Global attributes: number of elements and number in use 85
PG2.7.10 Global attributes: null element location value . 86
PG2.7.11 Elements in stream have similar properties . 86
PG2.7.12 Elements include values of locations . 86
PG2.7.13 Elements may be copied . 86
PG2.7.14 Elements may have attributes . 86
PG2.7.15 Location streams may contain null (discarded) elements 87
PG2.7.16 Location streams may be queried for valid elements . 87

PG2.8 Location stream methods requiring registries of dependent data 87
PG2.8.1 Registry of data streams . 87
PG2.8.2 Extensible location streams may be extended . 87
PG2.8.3 Extensible location streams may be shortened . 88

7

PG2.8.4 Extensible length location streams may be converted to fixed length 88
PG2.8.5 Fixed length location streams may be converted to extensible length 88
PG2.8.6 Fixed length streams may have null elements moved to end 88

PG3 Physical grids 88
PG3.1 Reading grids . 88
PG3.2 Writing grids . 89
PG3.3 Local physical grids may be internally generated . 89
PG3.4 Null physical grid creation . 89
PG3.5 Physical grid query. 89
PG3.6 Cell specification . 89
PG3.7 Refinement . 90
PG3.8 Regeneration . 90
PG3.9 Distributed grid reference . 90
PG3.10 Horizontal coordinate independent of vertical . 90
PG3.11 Vertical coordinate potentially dependent on horizontal. 90
PG3.12 Dimension extension . 91
PG3.13 Dimension reduction . 91
PG3.14 Arbitrary dimensional physical grids . 91
PG3.15 1- 2- or 3- dimensional local physical grids . 91
PG3.16 Index order . 91
PG3.17 Dimension reordering . 92
PG3.18 Location index determination . 92
PG3.19 Index location determination . 92
PG3.20 Horizontal physical grids . 92

PG3.20.1 Physical grids map projections . 92
PG3.20.2 Unstretched cartesian internal generation . 93
PG3.20.3 Latitude-longitude internal generation . 93
PG3.20.4 Stand-alone global physical grid generation examples . 93
PG3.20.5 Supported topologies . 93
PG3.20.6 Local physical grid topology consistency checking . 94
PG3.20.7 Areas tile sphere . 94
PG3.20.8 Staggered grids . 94
PG3.20.9 Available subgrids . 94
PG3.20.10 Extensible grid point representations . 94

PG3.21 Horizontal functional representations . 95
PG3.21.1 Horizontal Fourier grids . 95
PG3.21.2 Horizontal spherical harmonics grids . 95
PG3.21.3 Mixed physical and Fourier grids . 95
PG3.21.4 Extensible horizontal functional representations . 95

PG3.22 Vertical functional representations . 96
PG3.22.1 Vertical user defined functions . 96

PG3.23 Area overlap checking . 96
PG3.24 Physical grid attributes . 96

PG3.24.1 Physical grid name . 96
PG3.24.2 Number of dimensions . 96
PG3.24.3 Dimension names . 96
PG3.24.4 Dimension lengths . 97
PG3.24.5 Dimension attributes and units . 97
PG3.24.6 Global attributes . 97

8

PG4 Grid metrics 97
PG4.1 Calculation of metrics . 97
PG4.2 Reading metrics . 98
PG4.3 MKS metric units . 98
PG4.4 Available metrics . 98
PG4.5 On-demand metrics . 98
PG4.6 Query by name . 98
PG4.7 Standard metric naming convention . 99
PG4.8 Dimensionality of metrics . 99
PG4.9 Available structured horizontal quadrilateral grid metrics . 99

PG4.9.1 Cell areas . 99
PG4.9.2 Half-edge lengths . 99
PG4.9.3 Center-to-edge distances . 100
PG4.9.4 Full-edge lengths . 100
PG4.9.5 Edge-to-edge distances . 100
PG4.9.6 Center-to-corner distances . 100
PG4.9.7 Cell orientation . 100

PG4.10 Available unstructured horizontal grid metrics . 100
PG4.11 Vertical metrics . 101
PG4.12 Cell volumes . 101
PG4.13 Methods for calculating metrics . 101

PG4.13.1 Jacobian metric calculation . 101
PG4.13.2 Spline metric calculation . 101
PG4.13.3 Distance-based metric calculation . 102

PG4.14 Additional metrics . 102

PG5 Grid masks 102
PG5.1 Arbitrary number of masks . 102
PG5.2 Mask names . 102
PG5.3 Category masks . 103
PG5.4 Multiplicative masks . 103
PG5.5 Mask complement . 103

VI Infrastructure Fields and Grids: Distributed Grids 104

1 Authors, target codes and review team 104

2 Distributed grid background 104

3 Background 104
3.1 Scope . 104
3.2 Location . 104
3.3 Summary . 105

4 Distributed grid requirements 106

DG1 Grid definition 106
DG1.1 Generation of a layout . 106

DG1.1.1 Subdivide a layout . 106
DG1.2 User-specified layout . 106
DG1.3 1D decomposition . 106

9

DG1.3.1 Index order . 106
DG1.4 2D decomposition . 107

DG1.4.1 Index order . 107
DG1.4.2 1D distributed arrays associated with a 2D decomposition 107

DG1.5 3D decomposition . 108
DG1.6 Generation of domain decomposition . 108
DG1.7 User-specified domain decomposition . 108
DG1.8 Domain masks . 109
DG1.9 Generation of grid topology . 109
DG1.10 Validity of grid topology . 109
DG1.11 Periodic boundary conditions . 109

DG2 Grid information retrieval 109
DG2.1 Exclusive domain retrieval . 109

DG2.1.1 Domain extents . 109
DG2.1.2 Domain begin and end indices . 110
DG2.1.3 Domain index list . 110
DG2.1.4 Maximum domain extent . 110
DG2.1.5 Exclusive domain list . 110

DG2.2 Local domain retrieval . 110
DG2.2.1 Domain extents . 110
DG2.2.2 Domain begin and end indices . 111
DG2.2.3 Domain index list . 111
DG2.2.4 Maximum domain extent . 111
DG2.2.5 Index translation for globally non-conformant local domains 111
DG2.2.6 Local domain list . 111

DG2.3 Memory domain retrieval . 112
DG2.3.1 Domain extents . 112
DG2.3.2 Domain begin and end indices . 112
DG2.3.3 Domain index list . 112
DG2.3.4 Maximum domain extent . 112
DG2.3.5 Memory domain list . 112

DG2.4 Global domain retrieval . 113
DG2.4.1 Domain extents . 113
DG2.4.2 Domain begin and end indices . 113

DG2.5 Layout retrieval . 113
DG2.6 Grid topology retrieval . 113
DG2.7 Which PE is a point on? . 113
DG2.8 Cross-component queries . 114

DG3 Grid relations 114
DG3.1 Equality of global domains . 114
DG3.2 Equality of domain decomposition . 114
DG3.3 Equality of PE assignment . 114

DG4 Halo update 115
DG4.1 Unblocked halo update . 115
DG4.2 Blocked halo update . 115
DG4.3 Wait for completion . 115
DG4.4 Validation and invalidation of halo points . 115
DG4.5 Arrays of derived type . 116

10

DG4.6 Adjoint of halo . 116

DG5 Data transpose 116
DG5.1 Unblocked data transpose . 116
DG5.2 Blocked data transpose . 116
DG5.3 Wait for completion . 116
DG5.4 Arrays of derived type . 117
DG5.5 Adjoint of transpose . 117

DG6 Gather 117
DG6.1 Allgather . 117
DG6.2 Partial gather . 117
DG6.3 Adjoint of gather . 118

DG7 Scatter 118
DG7.1 Partial scatter . 118
DG7.2 Adjoint of scatter . 118

DG8 Broadcast 118
DG8.1 Adjoint of broadcast . 119

DG9 Bundling 119
DG9.1 Initiate a bundle . 119
DG9.2 Add an array . 119
DG9.3 Delete an array . 120
DG9.4 Merge bundles . 120

DG10 Global reduction operations 120
DG10.1 Integer global sum . 120
DG10.2 FP and complex global sum . 120

DG10.2.1 FP and complex global sum under a mask . 120
DG10.2.2 FP and complex global sum along one axis . 121
DG10.2.3 FP and complex bit-reproducible global sum . 121

DG10.3 FP and complex global checksum . 121
DG10.4 Adjoints of all sums except checksum are required . 121
DG10.5 Global maximum of integer or FP data . 121

DG10.5.1 Location of global maximum . 121
DG10.6 Global minimum of integer or FP data . 122

DG10.6.1 Location of global minimum . 122

DG11 Blocked and unblocked collectives 122

DG12 Grid staggering 122
DG12.1 AGRID . 122
DG12.2 BGRID . 122
DG12.3 CGRID . 123
DG12.4 DGRID . 123
DG12.5 EGRID . 123

VII Requirements for Specific Grid Types 123

11

DG13 Tripolar grid 123
DG13.1 Vector component reversal . 124
DG13.2 Redundancy enforcement . 124
DG13.3 Validity of grid . 124

DG14 Cubed-sphere grid 124
DG14.1 Vector component interchange . 124
DG14.2 Redundancy enforcement . 125

DG15 Spectral grid 125
DG15.1 Globalize on one axis . 125
DG15.2 Transpose axis of globalization . 125

DG16 Exchange grid 125

DG17 Icosahedral grid 125

DG18 Reduced grids 126

DG19 Nested grids 126
DG19.1 Discrete data shift on moving nests . 126

DG20 Unstructured grids and ungridded data 126
DG20.1 Grid association . 126
DG20.2 Domain decomposition . 127
DG20.3 Halos and halo updates . 127
DG20.4 Data transpose . 127

VIII Infrastructure Fields and Grids: Regridding 128

1 Authors, target codes and review team 128

2 Regrid background 128
2.1 Location . 128
2.2 Scope . 129

RG1Regrid requirements 130

RG2 General regridding requirements 130
RG2.1 Creation . 130
RG2.2 Destruction . 130
RG2.3 Query . 130
RG2.4 Change . 130
RG2.5 Reading . 131
RG2.6 Writing . 131
RG2.7 Support for ESMF grids . 131
RG2.8 Multiple fields . 131

RG2.8.1 Interface requires only data arrays . 131
RG2.8.2 Consistency of field bundles . 132

RG2.9 Multiple methods per grid pair . 132
RG2.10 Consistency of coordinates . 132

RG2.10.1 Consistency of coordinates check . 132

12

RG2.11 Interpolation adjoints . 132
RG2.12 Masked regridding . 133

RG2.12.1 Mask consistency . 133
RG2.13 Independence of field . 133
RG2.14 Dependence of field . 133

RG3 Regridding algorithms 134
RG3.1 Conservation . 134

RG3.1.1 Verification of conservation . 134
RG3.2 Monotonicity . 134
RG3.3 Higher-order schemes . 135
RG3.4 Vector fields in physical space . 135
RG3.5 Vector fields in logical space . 135
RG3.6 Regridding based on index space . 135

RG3.6.1 Index space changes . 136
RG3.7 Fourier transforms . 136

RG3.7.1 Return types for Fourier modes . 136
RG3.7.2 Parallel implementations . 136

RG3.8 Legendre transforms . 137
RG3.8.1 Data types for Fourier modes . 137
RG3.8.2 Parallel implementations . 137

RG3.9 Other functional transforms . 137
RG3.10 Interpolating from gridded data to ungridded data . 137
RG3.11 Interpolating from ungridded data to gridded data . 138
RG3.12 User-supplied regridding methods . 138

RG4 Other utilities 138
RG4.1 Exchange grid . 138

IX Infrastructure Utilities: Time Management 139

1 Authors, target codes and review team 139

2 Time management background 139
2.1 Location . 139
2.2 Scope . 139

3 Time management summary of requirements 140

4 Time management abbreviations 140

5 Time management requirements 141

TMG1Time intervals 141
TMG1.1 Specifying time intervals . 141
TMG1.2 Time intervals as return values . 142
TMG1.3 Resolution . 142
TMG1.4 Range of time intervals . 142
TMG1.5 Operations . 142

TMG1.5.1 Change value . 142
TMG1.5.2 Copy . 143

13

TMG1.5.3 Comparison . 143
TMG1.5.4 Increment and decrement . 143
TMG1.5.5 Division . 143
TMG1.5.6 Subdivision . 143
TMG1.5.7 Multiplication . 144
TMG1.5.8 Magnitude . 144
TMG1.5.9 Return in string format . 144

TMG2Time instants 144
TMG2.1 Units and representation . 144
TMG2.2 Consistency with time interval . 145
TMG2.3 Supported calendars . 145

TMG2.3.1 Gregorian calendar . 145
TMG2.3.2 No-leap calendar . 145
TMG2.3.3 Julian calendar . 145
TMG2.3.4 360-day and generic calendar . 145
TMG2.3.5 No calendar option . 146

TMG2.4 Operations . 146
TMG2.4.1 Change time instant value . 146
TMG2.4.2 Copy . 146
TMG2.4.3 Comparison . 146
TMG2.4.4 Increment or decrement by time interval . 146
TMG2.4.5 Increment or decrement by a calendar interval . 147
TMG2.4.6 Interval between time instants . 147
TMG2.4.7 Return in string format . 147

TMG2.5 Queries . 147
TMG2.5.1 Standard queries . 147
TMG2.5.2 Query day of year . 148
TMG2.5.3 Query day of week . 148
TMG2.5.4 Query day of month . 148
TMG2.5.5 Query middle of month . 148
TMG2.5.6 Query julian day . 148
TMG2.5.7 Query hardware realtime clock . 148

TMG3Clocks 149
TMG3.1 Clock initialization . 149
TMG3.2 Multiple clocks . 149
TMG3.3 List of clocks . 149
TMG3.4 Operations . 149

TMG3.4.1 Advance method . 149
TMG3.4.2 Reset timestep interval . 149
TMG3.4.3 Change clock current time instant . 150
TMG3.4.4 Restore clock state . 150
TMG3.4.5 Synchronize with external clock . 150

TMG3.5 Queries . 150
TMG3.5.1 Query number of timesteps . 150
TMG3.5.2 Query timestep interval . 150
TMG3.5.3 Query start, stop, reference time . 151
TMG3.5.4 Query current or previous time instants . 151
TMG3.5.5 Query current or previous simulation times . 151
TMG3.5.6 “Is Later” query . 151

14

TMG4Alarms 151
TMG4.1 Alarm initialization . 151
TMG4.2 Multiple alarms per component . 152
TMG4.3 List and print of alarms . 152
TMG4.4 Alarm states . 152
TMG4.5 Ring criteria . 152

TMG4.5.1 Ring at time instant . 152
TMG4.5.2 Ring at interval . 152
TMG4.5.3 Initial ring state . 153

TMG4.6 Alarm turn-off . 153
TMG4.7 Restore alarm state . 153
TMG4.8 Alarm queries . 153

TMG5Accuracy of calculations 153
TMG5.1 Exact increment and decrement . 153
TMG5.2 Exact interval calculation . 154
TMG5.3 Exact subdivision . 154
TMG5.4 Floating point accuracy consistent with time step . 154

TMG6Cross-component clock and alarm queries 154
TMG6.1 Cross-component query . 155
TMG6.2 Clock and alarm labels . 155

TMG7General computational requirements 155
TMG7.1 Error handling . 155

TMG7.1.1 Check validity . 155
TMG7.2 Overloaded arithmetic operators . 155
TMG7.3 Automatic memory deallocation . 156
TMG7.4 Temporary objects . 156
TMG7.5 Thread safety . 156

X Infrastructure Utilities: Communication and Memory Kernels 158

1 Target Codes and Review Team 158

2 Background 158
2.1 Location . 158
2.2 Scope . 158
2.3 Related Material . 159

3 Communication and Memory Kernels Abbreviations 159

CMK1Basic, portable MPI based transport 160
CMK1.1 A baseline MPI based build must be available . 160

CMK2Basic, portable threads based parallelism 160

References 160

XI Infrastructure Utilities: Configuration Atrributes 161

15

1 Configuration Attributes Overview 162

2 Target Codes and Review Team 162

3 Introduction 162

4 Background 162
4.1 Location . 162
4.2 Scope . 162
4.3 Related material . 163

5 Configuration Attributes Terms 163

6 Configuration Attributes Abbreviations 163

7 Configuration Attributes Requirements 164

CA1 A human friendly format for parameter specification should be provided 164
CA1.1 Text files specifying parameters should allow comments . 164
CA1.2 Text file parsing errors should at the least provide . 164
CA1.3 Text file syntax should be backwards compatible with NAMELIST formats. 164

CA2 Attributes can be sub-classified 164

CA3 Attributes can be optional and could be introduced at runtime 165

CA4 A system for defaults and overrides should be supported 165

CA5 A system that is compatible with unique naming should be devised 165

CA6 Components should be able to query the attributes of other components 165

CA7 Components should be able to set attributes to be writable by other components 166

References 166

XII Infrastructure Utilities: Performance Profiling 167

1 Authors, target codes and review team 167

2 Background 167
2.1 Location . 167
2.2 Scope . 167

3 Performance profiling requirements 168

PP1 Code section timing 168
PP1.1 Named timers . 168

PP1.1.1 Named timer reset . 168
PP1.2 Types of time . 168

PP1.2.1 User time . 168
PP1.2.2 System time . 169
PP1.2.3 Wall clock time . 169

16

PP2 Hardware counters 169

PP3 Process granularity 169
PP3.1 Process level . 170
PP3.2 Thread level . 170

PP4 Reporting 170
PP4.1 Log output . 170
PP4.2 API retrieval . 170
PP4.3 Statistics . 170

PP4.3.1 Thread statistics . 171

PP5 Call deactivation 171
PP5.1 Compile deactivation . 171
PP5.2 Runtime deactivation . 171

XIII Infrastructure Utilities: Log 172

1 Authors, target codes and review team 172

2 Background 172
2.1 Location . 172
2.2 Scope . 172

LG1Log requirements 173

LG2 Interface characteristics 173
LG2.1 Fortran write interface . 173
LG2.2 Printf style interface . 173

LG3 Log states/levels 173

LG4 Output medium 173

LG5 Process organization 174

LG6 Flush command 174

XIV Infrastructure Utilities: I/O 175

1 Authors, target codes and review team 175
1.1 I/O architecture . 175
1.2 Data models . 175
1.3 Metadata. ESMF metadata conventions . 176
1.4 Data formats . 177
1.5 Parallel I/O . 178
1.6 Synchronous and asynchronous IO . 178
1.7 Location . 179
1.8 Scope . 179

2 IO requirements 180

17

IO1 General IO requirements 180
IO1.1 Establish ESMF metadata conventions . 180
IO1.2 Provide automatic generation of metadata . 180
IO1.3 Provide generation of companion metadata file . 180
IO1.4 Provide generation of GrADS control file . 180

IO2 IO requirements for supporting different data formats 181
IO2.1 Reading and writing netCDF files for structured gridded data . 181
IO2.2 Reading and writing netCDF files on unstructured grids . 181
IO2.3 Reading and writing netCDF files for observational data . 181
IO2.4 Reading and writing netCDF files using DODS . 181
IO2.5 Reading and writing HDF4 files for structured gridded data . 181
IO2.6 Reading and writing HDF4 files for data on unstructured grids 182
IO2.7 Reading and writing HDF4 files for observational data . 182
IO2.8 Reading and writing HDF5 files for structured gridded data . 182
IO2.9 Reading and writing HDF5 files for data on unstructured grids 182
IO2.10 Reading and writing HDF5 files for observational data . 182
IO2.11 Reading and writing HDF-EOS files for structured gridded data 183
IO2.12 Reading and writing HDF-EOS files for data on unstructured grids 183
IO2.13 Reading and writing HDF-EOS files for observational data . 183
IO2.14 Reading and writing GRIB files for structured gridded data . 183
IO2.15 Reading and writing GRIB files for data on unstructured grids 184
IO2.16 Reading and writing native binary files . 184
IO2.17 Reading and writing BUFR files . 184

IO3 Parallel I/O requirements 184
IO3.1 Single-threaded IO of distributed data . 184
IO3.2 Multi-threaded IO of distributed data to a multiple files . 185
IO3.3 Multi-threaded read of distributed data from a single file . 185
IO3.4 Multi-threaded write of distributed data to a single file . 185
IO3.5 Synchronous and asynchronous IO . 185

References 186

XV Glossary 187

IO1Glossary 187

18

1 Synopsis

The following document describes the scope and formal requirements of the Earth System Modeling Framework
(ESMF) – a NASA sponsored high-performance computing project for Earth science modeling and data assimilation.
The document contains a series of parts. Each part compriss=es of a series of introductory sections and then specifi-
cations of detailed formal requirements for that part. The document begins with the General Requirements (part I).
The subsequent parts (II to XIV) elaborate in more detail on the content identified in the General Requirements. A
glossary of terms used to describe ESMF requirements and that are used to define the system can be found at the end
(part XV).

19

Part I

General Requirements

2 Target codes and review team

Review Date: 20 March, 2002

Target Codes Reviewers
GFDL-SPEC, BGRID, MOM4 Balaji, Smithline
HIM Hallberg
CAM-EUL, CLM, CCSM-CPL Boville
CAM-FV, PSAS da Silva, Sawyer
POP, CICE Jones
WRF Michalakes
MIT-REG, MIT-CPL, ADJ Hill
NSIPP-ATM, NSIPP-OCN Suarez
NCEP-ATM, SSI Iredell

Other Reviewers: DeLuca, Neckels, Larson, Jacob

20

3 Introduction

The ESMF is a complex and ambitious project. The scope of Earth science modeling is so broad, and the term
“framework” so ambiguous, that the ESMF name alone provides little clarification as to what the ESMF actually
is. In this document, we set about addressing the first wave of questions that typically accompany an introduction
to the ESMF project. What will the ESMF do for the modeling community? What kinds of functionality will the
ESMF include? What sorts of components will it couple? Is it associated with a standardization effort and if so
which interfaces will be standardized? What happens when the initial funding period is over? It so happens that
these questions can be largely addressed by describing three types of “general requirements”: an overall vision for
the project; a statement of the scope of the project; and a formal listing of requirements that apply to the whole
body of ESMF sofware. The last of these three can be formulated as tangible properties of the framework that can
be validated. The overall vision and statement of the scope sections are included here as general information that
provides background statements of overall vision, project mission, project strategy and project philosophy. The formal
validation that the system satisfies the broad statements that the overall vision and statement of the scope sections
contain (sections 4, 5, 6 and 7) occurs through the satisfaction of the detailed requirements given in parts (II - XIV)
of this document.

The first type of requirement, itemized in the statement of project vision, is sometimes called a “business require-
ment.” [9] It describes those objectives, however hazy and unquantifiable, whose attainment will ultimately lead the
Earth System Community to assess the ESMF as a success or failure. The second type of requirement, discussed in
the statement of project scope, describes the infrastructure requirements that the ESMF will fulfil. Here we describe
the functionality of the ESMF, and specify what capabilities the ESMF will not 1 include. Finally, we list a set of func-
tional requirements – some quite specific – that apply to all ESMF software. These will be referenced in subsequent
class requirements documents.

4 Project vision

These are the broad objectives of the ESMF project:

� Facilitate the exchange of scientific codes so that researchers may more easily take advantage of the wealth of
resources that are available in smaller-scale, process modeling and may more easily share experience among
diverse large-scale modeling and data assimilation efforts.

� Promote the reuse of standard technical software, the development of which now accounts for a substantial
fraction of the software development budgets of large groups. Any center developing or maintaining a large
system for NWP, climate or seasonal prediction, data assimilation, or basic research now has to solve very
similar software engineering and routine computational problems.

� Focus community resources to deal with architectural changes and the lack of appropriate commodity middle-
ware. The technical parts of the codes that would be dealt with in a common framework are also the most
sensitive to architectural changes.

� Present the computer industry with a unified, well-defined and well-documented task for them to address in their
software design. The scientific community’s influence with the industry might be much enhanced if exercised
jointly by the major modeling centers.

� Share the overhead costs of the software engineering aspects of model development: careful design, complete
documentation, user training, and comprehensive testing. These are the efforts that are most easily neglected
when corners have to be cut.

� Provide institutional continuity to model and data assimilation development efforts.

1Items that are not included will not be included during this initial development effort, but, may be added in any follow-up development effort.

21

Machine layer

Field and grid layer

Model layer

Coupler layer

ESMF Infrastructure

User code

ESMF Superstructure

� �

Figure 1: Schematic diagram of ESMF layered architecture.

� Lay the foundation for developing standard classes, components, generic algorithms and data structures that can
be used and customized to solve a variety of problems, thereby increasinf developer productivity.

These project objectives describe the desired impact of the ESMF on the Earth system modeling community.
Although some of these objectives are non-quantitative and difficult to verify, they still must be satisfied to consider
the ESMF project truly a success. It is essential to allow them to influence project execution, since it will be possible
to satisfy detailed functional requirements but fail to achieve the underlying objectives of our effort.

5 Scope

This section describes the scope of the ESMF software. Specific requirements will be derived from the functionality
described here, and presented in more detail in other requirements documents.

The ESMF provides two primary services: to facilitate coupling of Earth system model components, and to sup-
port lower-level tasks widely used in Earth Science modeling on high performance computer platforms. We refer to
the first of these services as the ESMF coupling superstructure and the second as the ESMF utility infrastructure.

The ESMF consists of:

� an interface specification for coupling components 2 ;

� a complete, portable, high-quality reference implementation 3 accompanied by extensive developer and user
documentation;

2The science needs of different users implies a wide variety of continually evolving component interface, for example Aeolian dust deposition
is currently being studied as a potentially significant process in climate evolution. Ten years ago almost no atmospheric models or ocean models
included these processes, ten years from now there will almost certainly be other feedbacks to incorporate. The component interface specification
will provide generic mechanisms, with standard signatures and semantics that support extensible, flexible and self-describing component model
interfaces. There are conceptual parallels to such Web projects as the Rseource Description Format (http://www.w3.org/RDF). Rather than attempt-
ing to fix domain-wide vocabularies, by enforcing standardized interfaces, the RDF provides a layer on which such vocabularies may be expressed,
and allowed to evolve. ESMF component interfaces likewise will provide the bedrock on which specific component interfaces (e.g an atmospheric
model interface) may be expressed. For example the ESMF interface specification will allow an ocean dynamics component to indicate that it can
provide sea-surface temperature as an output and will provide a naming mechanism to identify the entities that contain this information. Using the
ESMF interface specification atmospheric physics and dynamics components could then indicate that they require a lower-boundary temperature as
an input and attach their lower-boundary temperature inputs to the ocean model sea-surface temperature output.

3A reference implementation is a widely used approach in deploying open standards like ESMF. A reference implementation is a product
(in this case a piece of software) that implements a standard. The ESMF reference implementation will be fully functional and optimized and
will be designed and tested for use in real applications. The reference implementation for ESMF will thus be the core framework surce code.
However, it will also serve to provide other implementors with a standard code to use for validation and to use in bootstrapping development
of specialized implementations. Examples of reference implementations of other standards can be found at http://snad.ncsl.nist.gov/cerberus/,

22

� a suite of application examples demonstrating how the ESMF software is used in practice.

The model components that the ESMF supports include atmosphere, ocean, land and sea ice models, and data
assimilation systems. Other well-defined high-level functions may also be represented as components in the ESMF
superstructure. It is at the level of these large-scale components that the ESMF interface specification applies 4 . Each
compliant component will provide a specified set of methods that will enable it to interoperate with other components
5 . For the most part, we expect components to be able to provide the required interface functionality through wrapping
of internal data structures and methods.

6 ESMF superstructure

All inter-component communication in the framework occurs through component calls to the superstructure. Here we
provide a synopsis of the requirements that the superstructure layer will have to meet. Detailed, tangible requirements
for the superstructure, that can be validated, are given in the Control and the Coupler and Gridded Component Inter-
faces detailed requirements sections - parts II and III of this document.

The main functions that ESMF superstructure enables (either directly or through services provided by lower layer
functions) are:

1. any merging, interpolation, or regridding of data necessary for communication between components (see parts
III and VIII for detailed requirements relating to this function);

2. transfering data between components (see part II for detailed requirements relating to this function);

3. sharing attribute information between components (see part II for detailed requirements relating to this func-
tion);

4. to coordinate execution, checkpointing and restarting of components (see part II for detailed requirements
relating to this function).

The superstructure provides a high-level interface that enables applications to be assembled from multiple com-
ponents. It coordinates the transfer of distributed grid data and ungridded observational data between components.
The superstructure will be able to direct the merging of data originating from multiple source grids, and will provide
spatial and temporal averaging of data (see parts II, III and VIII).

The ESMF will be capable of operating in multiple modes of execution. components may exist within the same
executable, within multiple executables, and in mixed modes. Components may execute serially, concurrently, and in
mixed modes (see CTL1, part II).

Functionality for regridding, interpolation, redistribution and other data communication will be abstracted away
from the high-level coupling interface. It is provided by a support layer. This support layer can be used within
components to perform efficient parallel grid operations.

7 ESMF infrastructure

The ESMF contains the software necessary to support the data decomposition and communication requirements of the
superstructure and individual components. This includes tools for describing field data discretized on a wide variety

http://www.socks.nec.com/reference/socks5.html, http://developer.java.sun.com/developer/onlineTraining/J2EE/Intro/, http://www.netlib.org/blas/,
http://www-unix.mcs.anl.gov/mpi/mpich/workingnote/adi2impl/note.html . The Netlib BLAS and MPICH examples are probably the most familiar
to the Earth science community. Most hardware vendors provide platform specialized variants of these systems. However, these variants are
frequently largely derived from the reference codes and are always validated by comparison against the reference code.

4The component interface can be applied to smaller components within a model, but, the initial development will not deliver then as part of its
milestones.

5Extensible, self-describing method interfaces will be used that draw conceptually on the ideas employed by systems for internet wide interop-
erability such as RDF - (see http://www.w3.org/RDF and HTTP)

23

of distributed grids. The ESMF supports distributed data operations in a distributed-memory environment, in a shared
memory environment, and in a hybrid computational environment where the platform is a cluster of shared-memory
multiprocessors.

7.1 Fields and grids

7.1.1 Fields

The ESMF supports representation, regridding, and other high-level collective operations on vector and scalar fields.
A field is represented by metadata, a description of its associated distributed grid, and field data itself. The detailed
requirements, with formal validation criteria and relative rankings, for this aspect of ESMF are given in parts V , VIII
and VI of this document. Here we provide a brief synopsis of the areas that are covered in that part of the document.

7.1.2 Gridded and observational data

The ESMF supports regridding, interpolation, redistribution, transfer, and merging of data discretized on the following
types of grids:

1. logically rectilinear grids: physical co-ordinates may be curvilinear. Logically rectilinear grids include such
grids as the tripolar and the cubed sphere;

2. reduced and regional grids;

3. unstructured grids (e.g., land grids);

4. phase space grids (e.g., spectral, Fourier);

5. nested grids;

6. observational data streams (temporal sequences of ungridded data);

7. other grids (e.g icosahedral).

The supplied implementation will include highly-optimized versions of these operations for the commonly-used
and representative grid types. The detailed requirements for this aspect of ESMF of given in parts V (Physical Grids
detailed requirements - which deals with what continuous spaces and disrete forms need to be represented) and VI
(Distributed Grids detailed requirements - which deals with parallel representations of these grids) of this document.
The detailed requirements include explicit requirements for future extensibility mechanisms to allow support for other
grids to be easily introduced.

7.1.3 Grid operations

The ESMF provides interpolation algorithms for supported grids. The detailed requirements, with formal validation
criteria and relative rankings, for this aspect of ESMF are given in part VIII. Here we provide a brief synopsis of
the areas that are covered in that part of the document. All interpolation algorithms included in ESMF are linear in
the data and will be accompanied by the associated adjoint. Adaptive procedures are not planned at this stage. Thus,
reconstruction of gridded data from observations (analysis) will not be a part of framework and will rather be provided
by data assimilation components.

The ESMF provides first-order and higher-order interpolation methods. The ESMF supports conservative remap-
ping/interpolation between any two grids. Non-conservative methods will also be supported.

Dynamic load balancing will be provided for standard decompositions, and general dynamic load-balancing tools
for specialized decompositions.

24

7.2 Utility infrastructure

The ESMF includes general purpose utility routines for use by both the ESMF coupler and application codes. The
detailed requirements, with formal validation criteria and relative rankings, for this aspect of ESMF are given in parts
IX - XIV of this document. Here we provide a brief synopsis of the areas that are covered in that part of the document.
These utilities, described in parts IX to XIV, include but are not limited to:

1. communication primitives (see part X);

2. a generic machine interface (see part X);

3. I/O utilities (see part XIV;

4. general message logging (see part XIII);

5. mechanisms for publishing and querying component attributes (see part XI); 6

6. performance profiling (see part XII);

7. time management (see part IX); and

8. error handling (see GR3 and part XIII).

7.2.1 Communication primitives

ESMF will offer a standard interface covering inter-processor communication and shared address space primitives,
covering point-to-point communication, global reduction operations, etc. An implementation in MPI will be provided.

7.2.2 Generic machine interface

ESMF will offer a generic interface to hardware, O/S and system library primitives.

7.2.3 I/O

The ESMF I/O utilities will include generic interfaces providing I/O in a variety of data formats including netCDF,
HDF, binary, GRIB, and BUFR. As much as possible, the utilities will offer scalable, parallel I/O, performance.

7.2.4 Performance profiling

A performance profiling utility will enable application developers to instrument code segments with timers. The
profiling utility will also offer access to hardware statistics by offering an interface to a package such as PAPI or PCL.

7.2.5 Time management

The ESMF will include a library for performing routine calculations with dates and time intervals. For higher level
model time management, the ESMF will include clocks for advancing and reporting model time and retaining model
integration information, and alarms for initiating both unique and periodic events.

7.2.6 Error handling

The ESMF will offer comprehensive and integrated error handling services. A mechanism to announce and query
component failure will be provided.

6Like many other elements under Utility infrastructure, the querying and publishing functions will be fundamental to the superstructure control
and coupling areas. Isolating the requirements here does not imply a particular system design organization or ranking.

25

7.3 Future plans

The following are capabilities that might conceivably have been included in ESMF, but will not be developed under
CAN 00-OES-01 funding:

1. a Graphical User Interface;

2. mathematical libraries for operations other than regridding and interpolation;

3. standard scientific modules, such as a library for calculating orbital parameters;

4. a database of intra-model components, such as convection schemes;

5. a database for storing experiments and related information;

6. a mechanism for job submission (e.g Globus);

7. optimization for additional model grids.

If additional resources are made available, the ESMF project foresees extending the initial framework. Each of the
features listed above is a possible addition.

8 Organization and conventions of detailed requirements chapters

Requirements documents shall be organized so that specific requirements are listed under a titled topic. For example,
under the title Multi-platform support, with the description The ESMF software must run on a number of high-
performance computing platforms, the ability to run on an SGI Origin, IBM SP, Compaq ES40, etc. would be listed
as individual and separately numbered requirements.

Templates for requirements documents are available in the ESMF document template set. The ESMF Software
Developers Guide describes all the documents that will be produced. The following extract reproduces the text from
the Developers guide that describes the attributes of detailed requirements.

8.1 Requirement attributes

Each specific requirement possesses the following attributes: priority, source, verification, status, and notes, the last of
which is optional. These are typical for requirements analysis [9]. We’ll now look at them in more detail.

Priority The purpose of the priority attribute is to associate each requirement with the milestones and longer term
project goals that it satisfies. Each requirement is assigned a number from 1-3, with values defined as follows:

1. This capability is directly required for a milestone OR Half or more of the JMC applications that could use
the utility or class in which this capability is embedded would require this capability in order to maintain
their existing functionality;

2. Less than half of the JMC applications that could use the utility or class in which this capability is embed-
ded would require this capability in order to maintain their existing functionality.

3. This capability is desired in order to extend the existing functionality of one or more JMC codes.

If some capability merits additional explanation to describe its priority, those preparing requirements are en-
couraged to elaborate.

Source The source attribute traces each capability to the applications to which it applies. In addition to applications
particular people or organizations may be noted. This attribute helps to identify those that can provide further
information and who may also be potential testers and users. It prevents the inclusion of features that have little
likelihood of being used.

26

Verification The verification attribute specifies an objective and quantitive strategy for assessing whether a require-
ment is satisfied. Typical values include code inspection, unit test and system test. Some capabilities may require
the preparation of special data sets.

Status Throughout the course of this project it will be useful for us to track what has been accomplished and to archive
ideas for extensions and improvements. The status attribute identifies each capability as:

� proposed; this indicates an item that has been accepted as useful, but that is not scheduled for implemen-
tation.

� approved-1; this indicates an item approved for implementing as part of the 1st code release at Milestone
F

� approved-2; this indicates an item approved for implementing as part of the 2nd code release at Milestone
G

� implemented
� verified
� rejected; this indicates an item that has been actively rejected by the review team.

Whether the cabability exists in other packages or models is also helpful to note.

Notes This is a catch-all for additional information such as background, references, related design and implementation
issues, risk factors, and so on.

27

9 Framework-wide requirements

Here we describe the requirements that apply to the whole body of ESMF software. We adopt the standard require-
ments format described in the ESMF Software Developer’s Guide. The abbreviation used to identify these General
Requirements is GR. The requirements are drawn from the applications and user needs from ESMF project participants
[1], from community feedback and from background analysis carried out by the NASA computational technologies
group [10].

GR1 Computational requirements

GR1.1 Language bindings

ESMF software shall support the following language bindings:

GR1.1.1 Fortran 90 interface

Priority: 1.
Source: All codes except GFDL-HIM require F90 interfaces.
Status: Approved-1.
Verification: Interface inspection (verification checklist will include array dimension information and optional
argument handling).

GR1.1.2 C++ interface

Priority: 1.
Source: GFDL-HIM.
Status: Approved-1.
Verification: Interface inspection (verification checklist will include array dimension information and optional
argument handling).
Notes: Handling of Try/Catch exception handling and error signal propogation over the C/C++ Fortran boundary
will need to be addressed in the preliminary design and implementation prototyping.

GR1.1.3 C interface

Priority: none
Source: GFDL-HIM.
Status: Rejected.
Notes: There will be a single interface serving C and C++ applications. This C/C++ interface will be sufficient
so the C only interface has been rejected.

GR1.2 Platforms

The ESMF shall operate on the following platforms:

GR1.2.1 IBM SP

Priority: 1-approved.
Source: NCAR, NCEP.
Status: Approved-1.
Verification: Unit test and system test.

28

GR1.2.2 SGI Origin

Priority: 1-approved.
Source: GFDL, LANL, NCAR, DAO. May be part of ESMF testbed system.
Status: Approved-1.
Verification: Unit test and system test.

GR1.2.3 Compaq ES

Priority: 1.
Source: NSIPP, DAO. May be part of ESMF testbed system.
Status: Approved-1.
Verification: Unit test and system test.

GR1.2.4 PC Linux platforms (including cluster)

Priority: 1.
Source: MIT. Required for optional cluster milestones.
Status: Approved-1.
Verification: Unit test and system test.

GR1.2.5 Sun-Solaris

Priority: 1.
Source: NCAR.
Status: Approved-1.
Verification: Unit test and system test.

GR1.2.6 Vector machines running Unix

Priority: 2.
Source: NCAR.
Status: Approved-2.
Verification: Unit test and system test.

GR1.3 Performance

Fully compliant adoption of the framework shall not increase the execution time of the milestone G codes, which are
maintained and developed outside the framework throughout the project, by more than 10% on scalar architectures
within their scalable range.

Priority: 1.
Source: Required for Milestone G.
Status: Approved-2.
Verification: Demonstrate with NCEP analysis and MITgcm ocean.

GR1.4 Precision

ESMF will provide methods for applications using default integers and floating-point numbers at either 32-bit or 64-bit
precision.

29

Priority: 1.
Source: DAO, NCEP.
Status: Approved-1.
Verification: Interface inspection (verification checklist will include array dimension information and optional
argument handling) , code inspection, unit test, system test.
Notes:

1. While it is technically possible through overloading to allow argument lists to contain arbitrary combi-
nations of 32-bit and 64-bit quantities, this Requirement only calls for a uniform application-wide word
length for integers and FP numbers to be supported.

2. There may be individual operations within ESMF that explicitly call for transformations between 64-bit
and 32-bit quantities. Those will appear as individual requirements.

GR1.5 Runtime configurability

The ESMF shall allow the user to set certain application parameters at runtime.

Notes: There are many runtime configurable parameters that need to be set for codes operating as framework
components. The sub-requiremente listed here GR1.5.1 - GR1.5.3 are some, but not all of these.

GR1.5.1 Configurable decomposition

ESMF shall allow domain decomposition and assignment of domains to processors, nodes, and/or threads to be con-
figurable at runtime. The choice of parallelization mechanism (message passing/multithreading/combination) must be
configurable at runtime.

Priority: 1.
Source: CAM-EUL.
Status: Approved-1.
Verification: System test.

GR1.5.2 Configurable resolution

ESMF shall allow model resolution to be configurable at runtime.

Priority: 1.
Source: all codes.
Status: Approved-1.
Verification: System test.

GR1.5.3 Configurable paths and directories

ESMF shall allow input and output paths and directories to be specified at runtime.

Priority: 1.
Source: all codes.
Status: Approved-1.
Verification: System test.

GR1.6 Bit-reproducibility

Bitwise identical results between two runs is an important feature for deterministic execution, as well as for debugging
and maintenance. This is not possible to enforce across platforms, at different levels of compiler optimization, or
even different versions of the same compiler. Within these constraints, ESMF shall provide varied levels of bit-
reproducibility:

30

GR1.6.1 Parallel bit-reproducibility

An execution mode will be provided which allows an ESMF-based model to return bitwise identical results from the
same executable at different processor counts, or different parallelism options. This execution mode is not subject to
the performance requirement of Section GR1.3.

Priority: 1.
Source: all JMC codes.
Status: Approved-1.
Verification: System test.

GR1.6.2 Bit-reproducibility on identical configurations

The default execution mode will allow an ESMF-based model to return bitwise identical results from the same ex-
ecutable at the same processor count, with the same parallelism options. This mode is subject to the performance
requirement of Section GR1.3.

Priority: 1.
Source: all codes.
Status: Approved-1.
Verification: System test.

GR1.6.3 Non bit-reproducing fast option

If a performance enhancement may be had by waiving the default requirement above, this will be made available in a
special execution mode. In this mode, even two runs at the same processor count, with the same parallelism options,
may not return bitwise identical results.

Priority: 2.
Source: NCEP, HIM.
Status: Approved-2.
Verification: System test.

GR1.7 Error handling

The ESMF shall be instrumented for error handling consistly across the framework. The user shall receive ample
information on errors including comprehensive error logging.

Priority: 1.
Source: Required by all codes.
Status: Approved-1.
Verification: Interface inspection (verification checklist will include array dimension information and optional
argument handling), code inspection, unit test, system test. Notes Components will be required to use ESMF
error handling utilities for fatal erros to be classified as well-behaved ESMF components.

GR1.8 Parallel race-condition error handling

Error handling code to detect race-conditions and other problems associated with parallelism shall be included.

Priority: 1.
Source: Required by all codes.
Status: Approved-1.
Verification: System test. Notes This could be acheieved through assertions and ordering/bookeeping counters
on messaging on communication operations.

31

GR1.9 Modularity

Layers of the framework will be designed to adapt to restructuring of other parts of the framework and user-supplied
components. For example, the coupling layers should be able to adapt to different implementations and data struc-
tures of component models. A modular design and implementation approach must be used that ensures parts of the
framework are independent of one another and can be developed concurrently.

Priority: 1.
Source: Required for interoperability Milestones I and J.
Status: Approved-1.
Verification: Interoperability experiments and incremental adoption demonstrations by deployment teams.
Notes: Good encapsulation, modular design and clean interfaces are critical to the maintenance of models built
with the framework. Framework classes, modules and algorithms must be easy to adapt to take advantage of
new techniques that are developed by the Earth science community and added to the framework.

GR1.10 Extensibility

The ESMF framework must allow extensions both for core suppport capabilities and through plug-in components.
Framework classes, modules and algorithms must be easily extensible to allow additional functionality to be added for
supporting new components like atmospheric chemistry, carbon cycle, etc...

Priority: 1.
Source: All codes
Status: Approved-2.
Verification: Milestone demonstrations of migration of more than twelve major applications and six styles of
gridding.
Notes: It is important that appropriate abstract interfaces and polymorphic methods are used to ensure adding
new methods, grids, algorithms and data structures can be easily done. This will facilitate building new types of
models that are not currently available.

GR1.11 Flexibility

The ESMF framework will be flexible and will be suited to a wide range of Earth science applications and a broad
span of target hardware. Framework classes, modules and algorithms must be flexible and provide options to support
both efficiency and accuracy.

Priority: 1.
Source: All codes
Status: Approved-1.
Verification: Milestone demonstrations of migration of more than twelve major applications on several different
platforms covering a wide variety of science scenarios that span research to operational forecasting.

GR1.12 Documentation

An exhaustive collection of documentation to support ongoing evolution of ESMF is required. The framework must
be fully documented, easily understandable and well supported.

Priority: 1.
Source: All codes
Status: Approved-1.
Verification: Compliance with software developers guide. Notes: The Software Developers Guide specifies a
suite of documents that will be produced.

32

GR1.13 Systematic build, test, packaging

A systematic scheme for disseminating stable, versioned software and for gathering and tracking defects is required.
The framework should be delivered to developers using the standard packaging utility for the supported platforms.

Priority: 1.
Source: All codes
Status: Approved-1.
Verification: Compliance with software developers guide. Notes: The Software Developers Guide specifies a
versioning schemes that will be used, release schedules and mechanisms for monitoring and managing product
quality.

GR1.14 Compatability with batch execution

Priority: 1.
Source: All codes
Status: Approved-1.
Verification: Milestone demonstrations.
Notes: In this mode, all input and output data are read and stored directly from file. This will be the standard
mode of operations used by many ESMF applications.

GR1.15 Compatability with interactive execution

Priority: 1.
Source: All codes
Status: Approved-1.
Verification: Milestone demonstrations.
Notes This mode allows rapid testing of new features and debugging. A trace mode which allows program
excution to be logges in detail, but at the expense of reduved performance, is useful in this mode. Future
extensions could include elements of computatinal steering in which program progress can be monitored and
directed interactively.

GR1.16 Compatability with ensemble methods

Priority: 1.
Source: All codes
Status: Approved-1.
Verification: Milestone demonstrations.
Notes: Ensemble methods require multiple instances of the same base component, generally with slight para-
metric variations. The ability to spawn numerous ensembles and then collect together results for automated
processing, such as covariance calculation, is a basic requirement. A general mix of concurrent and sequential
ensemble member execution must be supported.

GR1.17 Compatability with multi-institution, multi-component simulations

Priority: 1.
Source: All codes
Status: Approved-1.
Verification: Milestone demonstrations.
Notes: Some form of component versioning, labeling and naming is required that enables experiment configu-
ration logs to include information of which components were used.

33

GR1.18 Ease of adoption

It must be straightforward to integrate ESMF into an application that is reasonably modular. Adapting an existing
modular application to use the frameworks coupling services shall require no more than 2% modification of the appli-
cations source code.

Priority: 1.
Source: GFDL, NSIPP.
Status: Approved-1.
Verification: Line count.

GR2 Maintenance and support requirement

The ESMF must be maintained as a long-term commitment by at least one institution. This maintenance must extend
beyond adaptation to the computational environment, and must include an ongoing research component dedicated to
increasing the performance, flexibility and functionality of the software.

Priority: 1.
Source: All participants.
Status: Approved-1.
Verification: Publicly documented commitment, line item in projected budgets.

GR3 Integrated resource monitoring and tracking

The ESMF shall be instrumented to allow resource utilization to be tracked and monitored.

Priority: 1.
Source: Required by all codes.
Status: Approved-1.
Verification: Unit test, system test.
Notes

References

[1] Earth system modeling framework. http://www.esmf.ucar.edu, 2002.

[2] A. Arakawa. Computational design for long-term numerical integration of the equations of atmospheric motion.
J. Comp. Phys., 1:119–143, 1966.

[3] V. Balaji. Parallel numerical kernels for climate models. In ECMWF, editor, ECMWF Teracomputing Workshop.
World Scientific Press, 2001.

[4] R. Heikes and D. A. Randall. Numerical Integration of the Shallow-water Equations of a Twisted Icosahedral
Grid. Part I: Basic Design and Results of Tests. Monthly Weather Review, 123:1862–1880, 1995.

[5] P.W. Jones. First- and second-order conservative remapping schemes for grids in spherical coordinates. Monthly
Weath. Rev., 127:2204–2210, 1999.

[6] D. Majewski, D. Liermann, P. Prohl, B. Ritter, M. Buchhold, T. Hanisch, G. Paul, and W. Wergen. The Oper-
ational Glbal Icosahedral-Hexagonal Gridpoint Model GME: Description and High-Resolution Tests. Monthly
Weather Review, 130:319–338, 2002.

[7] Ross J. Murray. Explicit generation of orthogonal grids for ocean models. J. Comp. Phys., 126:251 – 273, 1996.

34

[8] M. Rancic, R.J. Purser, and F. Mesinger. A global shallow-water model using an expanded spherical cube:
Gnomonic versus conformal coordinates. Quart. J. Roy. Meteor. Soc., 122:959 – 982, 1996.

[9] Wiegers, K. E. Software Requirements. Microsoft Press, 1999.

[10] Womack, B., Higgins, G. Software Engineering Support of the Third Round of Scientific Grand Challenge
Investigations. General Requirements Analysis. NASA/CT Internal Document, 2002.

35

Part II

Superstructure: Control

1 Authors, target codes and review team

Authors: V. Balaji and Chris Hill

Review Date: 25 April, 2002

Target Codes Reviewers
GFDL-SPEC, BGRID, MOM4 Balaji
HIM Hallberg
CCSM-CPL Craig, Kauffman
CAM-EUL, CLM Boville
CAM-FV, PSAS da Silva, Sawyer
POP, CICE Jones
WRF Michalakes
MIT-REG, MIT-CPL, ADJ Hill
NSIPP-ATM, NSIPP-OCN Suarez
NCEP-ATM, SSI Iredell, Young

Other Reviewers: DeLuca, Neckels, Larson, Jacob

2 Introduction

3 Background

The ESMF is a software framework for the construction of applications by coupling modeling and data processing
components that are executing on shared- and distributed-memory scalable systems. The components may them-
selves be parallel. Consequently, a a single ESMF application may run on a variety of platforms, perhaps including
components coupling across different platforms to form a single heterogeneous application.

The construction of such applications involves harnessing of system resources (processors, memory, CPU time,
I/O channels, etc.) from operating systems. While individual components may independently manage such resources
themselves, it will be necessary to have a functional layer that provides a means of coordinating resource utilization
and that acts as a conduit between components. The implementation of this function could range from an extremely
general Globus-like approach, to something more tightly focused on the needs of a small community. Begin with the
community-wide consultative process of writing this requirements document, we anticipate arriving at an appropriate
level of generality for this function. Within ESMF the function we are defining is referred to as the Control layer.

Connecting between components also requires a means of data transfer. This involves the actual data (e.g surface
fluxes) that is to be shared between components and attributes of components that may be required by others (e.g.
metadata describing datatypes a particular component is capable of providing, frequency of availability of such data);
and means of signalling between components (e.g to organize a shutdown). There are many possible mechanisms by
which data transfers could be expressed and many mechanisms by which data can be transported. The Control layer
will play an integral role in determining how data from the name space of one component is made available in the
name space of another component.

These functions necessarily reside in a layer outside the purview of individual components. The Control layer
described in the document forms part of the ESMF superstructure to provide a layer of inter-component coordination
and connectivity.

36

3.1 Location

This layer is a major element of the Superstructure. The Control layer will be involved in setting up processor
subsets (“pelists”s) that will be used by various layers in the ESMF Infrastructure (DistGrid and CommKernels). In
conjunction with the Coupler layer, it is responsible for setting up and executing data and signal exchange between
components.

3.2 Scope

The scope of Control is to manage system resources for a multi-component ESMF application and co-ordinate execu-
tion and information exchange between components. It is not intended to take over the duties of an operating system
scheduler, but rather performs a subset of those operations within the context of a single application. Also, given
that OS schedulers vary widely in the kinds of user control they provide, Control will allow components to have a
systematic way of requesting resources.

As far as possible the Control layer will be unaware of the content of components. As such, the detailed logic
within a component will be treated as a black box and the Control layer will only deal with mapping inputs and outputs
between components. In other words, the data connection elements of the Control layer are primarily concerned with
expressing that certain entities in the namespace of one component map to counterpart entities in the namespace
of another component, the content of the entities if of no interest to the Control layer. Similarly, the data transport
elements of the Control layer are primarily concerned with any required movement of data between entities in different
name spaces, again with only minimal concern about the actual data being transported. As a result the Control layer
will not understand that a particular component is a land model and that another component is an ocean model.

In a related area, the sequencing of operations in Control layer will be based on a simple imperative structure
that will assume that components to be used are known and located ahead of time (Chris, will you always know this
ahead of time in MPMD?) and that their set of possible inputs is also known outputs. Functions such as dynamic
discovery of components with specific capabilities (for example “seeking out” an ocean model that can simulate a
particular period at a particular resolution) is not within the scope of the Control layer.

It is possible to imagine layering tools such as discovery and component identification tools on top of the basic
Control layer within ESMF. However, such tools fall outside the scope of the core ESMF development.

3.3 Summary

The Control element is the main program invoked by all programs participating in an ESMF application. Both SPMD
and MPMD operations are supported. It is responsible for managing the computational resources assigned to the job,
and apportioning them among components. The Control element itself will be able to save its state, and restore it from
a file. It will be able to restart on a set of assigned resources different from the saved one.

Components will be able to make requests in the form of a list of computational resources (PEs and memory), and
must be capable of working with assigned resources. Components may themselves use shared or distributed memory.
Components are free to use the assigned resources as desired; but may also accept hints from the Control element
about how to use them.

The Control element also orchestrates data exchanges between components. Components may share data using
shared or distributed memory. Data exchanges can be scheduled using Time Manager semantics. Exchanges may be
explicit or implicit. The coupling timestepping between components may be forward, backward, or forward-backward.

Components will have a standard interface to define their desired inputs and expected outputs to and from other
components. The Control element is responsible for validating the exchanges.

Original text from Boulder meeting, 22 Feb 2002:

parallel initialization and termination, checkpoint management, handshaking between multiple executa-
bles, assignment of components to processors, concurrent and serial scheduling options for components,
interfaces for data transfer between components, definition of standard external interfaces that compo-
nents are required to provide.

37

Figure 2:

3.4 Examples

To make the role of Control more concrete we consider some examples of the different configurations that might be
assembled into an ESMF Application. The assembly of an application involves both introducing connections between
components and deploying components onto hardware. The Control layer in ESMF maintains global information
related to the assembly of an applicaton.

The examples shown here illustrate two possible situations that the Control layer has to support.

38

Figure 3:

39

Figure 4:

40

Figure 5:

41

Figure 6:

42

Figure 7:

43

Figure 8:

44

4 Control requirements

This part covers all the functions for high-level coordination between components.

CTL1 The control element

CTL1.1 Control as main program

The Control element may constitute the main program invoked by each executable participating in an ESMF applica-
tion.

Priority: 1
Source: CCSM-CPL, POP, CICE, PSAS, MIT, GFDL
Status: Approved-1
Verification: System test. Notes: overlap with Components.

CTL1.2 Control as subroutine

The Control element may be invoked by executables participating in an ESMF application, which have their own main
program.

Priority: 1
Source: CCSM-CPL, POP, CICE, PSAS, MIT, GFDL
Status: Approved-1
Verification: System test. Notes: overlap with Components.

CTL1.3 SPMD

It shall be possible to start, advance and terminate all components in the context of a single program.

Priority: 1
Source: CCSM-CPL, POP, CICE, PSAS, MIT, GFDL
Status: Approved-1
Verification: System test. Notes: overlap with Components.

CTL1.4 MPMD

It shall be possible for independently started components to interact with a single control element.

Priority: 1
Source: CCSM-CPL, POP, CICE, PSAS , MIT, GFDL
Status: Approved-1
Verification: System test. Notes: overlap with Components.

CTL1.5 Parallelism

The CNTL element should be scalable.

Priority: 1
Source: CCSM-CPL, POP, CICE, PSAS (desired), MIT, GFDL
Status: Approved-1.
Verification: System test.
Notes: This is essential for scalability. The control mechanism should not be a sequential bottleneck. Notes:
overlap with Components.

45

CTL1.6 Components within address space

The control element should be able to interact with components that share its address space.

Priority: 1
Source: CCSM-CPL, POP, CICE, MIT, GFDL
Status: Approved-1.
Verification: System test. Notes: overlap with Components.

CTL1.7 Components outside address space

The control element should be able to interact with components that do not share its address space.

Priority: 1
Source: CCSM-CPL, POP, CICE, PSAS, MIT, GFDL
Status: Approved-1.
Verification: System test.
Notes: This could be done using MPI based messaging or native API’s that are optimal for a given platform.
It should be possible for the control layer to make smart decisions about what to use. Notes: overlap with
Components.

CTL1.8 Customized bindings

The control layer should be able to control the binding of both its own tasks and components’ tasks to compute
resources, so that the resulting sets of tasks are aligned efficiently on compute resources.

Priority: 2
Source: CCSM-CPL (desired), MIT, GFDL, NSIPP
Status: Approved-1.
Verification: System test.
Notes: We want to have the control layer task for a particular spatial grid region aligned with the physical
model components and coupler components that operate on that region. Binding encompasses both associating
tasks with specific PE lists and creating the necessary communication substrate to connect tasks that need to
communicate. This involves interactions with distributed grid and communication kernel elements. Notes:
overlap with Components.

CTL1.9 Automatic binding of tasks to resources

Support for automated compute resource binding of tasks should be provided.

Priority: 3
Source: CCSM-CPL (desired), MIT (desired), NSIPP, GFDL
Status: Proposed.
Verification: System test.
Notes: Automated binding could be based on estimates and follow certain optimality rules that are based of
both knowledge of compute resources and of the distribution of grids over tasks within multiple, interacting
components. Alternatively automated binding could be based on runtime measurement. Notes: overlap with
Components.

CTL1.10 Write and restore from restart state

The control element shall be able to write its restart state, and be able to reconstruct itself identically based on this
state.

46

Priority: 1
Source: CCSM-CPL, POP, CICE, PSAS, MIT, GFDL
Status: Approved-1.
Verification: System test. Notes: Components must be able to write their own restart. Notes: overlap with
Components.

CTL1.11 Restore and reconfigure

The control element should be able to restart on a PE configuration different from that in its restart state.

Priority: 1
Source: CCSM-CPL, POP, CICE, PSAS, MIT, GFDL
Status: Approved-1.
Verification: System test.
Notes: Components must be able to do this too for it to work. Notes: overlap with Components.

CTL2 Computational resource management

CTL2.1 Global PE list

It shall be possible, at any instant of an execution, to retrieve the global list of PEs participating in an application.

Priority: 1
Source: CCSM-CPL, POP, CICE, PSAS, MIT, GFDL
Status: Approved-1.
Verification:
Notes: Does this grow as MPMD executables check in? Can control retain control of these PEs if MPMD
executables check out? Notes: overlap with Components.

CTL2.2 Query PE attributes

CTL2.2.1 ID for PEs

Each PE within an application shall have a retrievable unique identifier.

Priority: 1
Source: CCSM-CPL, POP, CICE, PSAS, MIT, GFDL
Status: Approved-1.
Verification: Unit test. Notes: overlap with CommKern.

CTL2.2.2 Memory node ID

Each block of PEs with equal flat access to a block of memory has a retrievable ID shared by those PEs.

Priority: 1
Source: CCSM-CPL, POP, CICE, PSAS, MIT, GFDL
Status: Approved-1.
Verification: Unit test. Notes: overlap with CommKern.

47

CTL2.2.3 Addressable node ID

A set of PEs capable of addressing the same block of physical memory (e.g., via message passing) has a retrievable
ID shared by those PEs.

Priority: 3
Source: CCSM-CPL (desired), GFDL(desired)
Status: Approved-2.
Verification: Unit test. Notes: overlap with CommKern.

CTL2.2.4 Processing node ID

A set of PEs to which an operating system scheduler is capable of assigning a single job has a retrievable ID shared
by those PEs.

Priority: 3
Source: CCSM-CPL (desired), GFDL(desired)
Status: Approved-2.
Verification: Unit test. Notes: Where the OS does not permit this identification, default to PE ID. Notes:
overlap with CommKern.

CTL2.2.5 Other machine attributes

System communication and I/O profiles will be retrievable.

Priority: 3
Source: CCSM-CPL (desired), MIT(desired)
Status: Approved-2.
Verification: Unit test. Notes: overlap with CommKern.

CTL2.3 Creating PE lists

CTL2.3.1 Exact specification

It shall be possible to create a PE list based on a user-specified set of PE IDs.

Priority: 1
Source: CCSM-CPL, PSAS, MIT, GFDL
Status: Approved-1.
Verification: Unit test.
Notes: For example, “Component requests PEs 0...31.” Notes: overlap with Components.

CTL2.3.2 Length specification

It shall be possible to create a PE list of a user-specified length (PE count).

Priority: 1
Source: CCSM-CPL, POP, CICE, PSAS, MIT, GFDL
Status: Approved-1.
Verification: Unit test.
Notes: For example, “Component requests N PEs.” Exception if N too large. Notes: overlap with Components.

48

CTL2.3.3 “Free” specification

It is possible to create a PE list of a user-specified length on which no other components have been scheduled.

Priority: 3
Source: CCSM-CPL (desired), PSAS (desired), MIT(desired), GFDL(desired)
Status: Approved-2.
Verification: Unit test.
Notes: For example, “Component requests N free PEs.” Exception if N too large. Notes: overlap with Compo-
nents.

CTL2.3.4 Memory node affinity

It shall be possible to create PE lists based on memory node affinity.

Priority: 3
Source: CCSM-CPL (desired), MIT(desired), GFDL(desired)
Status: Approved-2.
Verification: Unit test.
Notes: For example, “component requests N PEs sharing an memory node”. Throw exception if length is greater
than number of PEs on the memory node. Other affinities may be required e.g. scratch space, memory, same
CPU, particular numerical library etc..... Notes: overlap with Components.

CTL2.3.5 Addressable node affinity

It is possible to create PE lists based on addressable node affinity.

Priority: 3
Source: CCSM-CPL (desired), MIT(desired), GFDL(desired)
Status: Approved-2.
Verification: Unit test.
Notes: For example, “component requests N PEs sharing an addressable node”. Throw exception if length is
greater than number of PEs on the addressable node.

CTL2.3.6 Processing node affinity

It is possible to create PE lists based on processing node affinity.

Priority: 3
Source: CCSM-CPL (desired), MIT(desired), GFDL(desired)
Status: Approved-2.
Verification: Unit test.
Notes: For example, “component requests N PEs sharing a processing node”. Throw exception if length is
greater than number of PEs on the processing node. Notes: overlap with Components.

CTL2.3.7 Component affinity

It is possible to create PE lists based on component affinity. This is to assign components which are closely linked to
be assigned “nearby” computational elements.

Priority: 2
Source: CCSM-CPL (desired), POP (desired), CICE (desired), PSAS (desired), MIT(important - it could be
hard to meet the 10% degradation milestone without this control somewhere), GFDL Status: Approved-2.

49

Verification: Unit test.
Notes: For example, “atmospheric physics component would like to be scheduled next to atmospheric dynam-
ics”. Notes: overlap with Components.

CTL2.3.8 Compact PE list

It is possible to request a PE list of given length whose associated memory extent is optimally compact.

Priority: 3
Source: CCSM-CPL (desired), MIT(desired), GFDL(desired)
Status: Approved-2.
Verification: Unit test?
Notes: For example, “give me N PEs distributed on the fewest possible memory nodes”. Other attributes could
be optimized in deciding layout. A general graph and edge optimizer could be used. Notes: overlap with
Components.

CTL2.3.9 Spawning of PE lists

It is possible to request a PE list subset of an existing PE list.

Priority: 2
Source: CCSM-CPL (desired), PSAS (desired), MIT, GFDL
Status: Approved-2.
Verification: Unit test.
Notes: “Of the 80p assigned to ocean+atmosphere, I’d like 32 for the atmosphere”. Notes: overlap with
Components.

CTL2.3.10 Complementary PE lists

It is possible to request a complementary subset of an existing spawned PE list with respect to its parent.

Priority: 2
Source: CCSM-CPL (desired), MIT, GFDL
Status: Approved-2.
Verification: Unit test.
Notes: “...and the other 48 for the ocean”. Required for concurrent scheduling. Notes: overlap with Compo-
nents.

CTL2.3.11 Modify PE list request

It is possible for a component to make any of the above requests at any time.

Priority: 3
Source: CCSM-CPL (desired), MIT(desired), GFDL(desired)
Status: Proposed.
Verification: System test. Notes: overlap with Components.

CTL3 Memory management

This overlaps somewhat with requirements in the CommKernel layer. I am including one line item here:

50

CTL3.1 Mapped memory region for data sharing

.
It shall be possible to request a region of shared address space to support cross-component communication.

Priority: 1
Source: MIT(needed for 10% milestone), GFDL
Status: Approved-1.
Verification: Unit test.
Notes: This is somewhat obscure: it is possible within shared address space to declare a region of memory
that all participating PEs see the same way (i.e pointers can be shared). This allows data sharing between
components to happen with much lower latencies than message-passing, albeit with some requirement on the
framework to accommodate different platform memory consistency behavior. This requirement is to lay the
ground to support such semantics. Its also possible between processing nodes(e.g. TreadMarks, SCI, VIA,
RDMA, IMC) or memory nodes (of course)!!! Notes: overlap with Components.

CTL4 Component initiation

How components get scheduled.

CTL4.1 Instantiation

It must be possible to create any number of instances of a component.

Priority: 1
Source: CCSM-CPL (desired), MIT(important), GFDL(important)
Status: Approved-1.
Verification: System test.
Note: Max/Michelle is this needed for NSIPP EnKF - CNH? Notes: overlap with Components.

CTL5 Component termination

What happens when a component is done.

CTL5.1 Termination

It must be possible to destroy any instance of a component.

Priority: 1
Source: CCSM-CPL (desired), MIT, GFDL
Status: Approved-1.
Verification: System test. Notes: overlap with Components.

CTL5.2 Release PE list

It shall be possible for a component to release its pelist.

Priority: 1
Source: CCSM-CPL (desired), MIT, GFDL
Status: Approved-1.
Verification: System test. Notes: overlap with Components.

51

CTL5.3 Component disappearance

Whenever possible, the control element should attempt a graceful exit (e.g checkpointing of all “live” components)
when a component under control undergoes unscheduled termination.

Priority: 1
Source: CCSM-CPL (desired), POP, CICE, PSAS, MIT, GFDL
Status: Approved-1.
Verification: System test.

CTL6 Component scheduling

This section covers ways in which components may be directed to advance.

CTL6.1 By timestep

It shall be possible to direct components to advance a specific number of steps.

Priority: 2
Source: CCSM-CPL, PSAS, MIT, GFDL(some codes)
Status: Approved-2.
Verification: System test.
Notes: Not all components may support this option. Notes: overlap with Components.

CTL6.2 By time

It shall be possible to direct components to return to control at a specified time instant.

Priority: 1
Source: CCSM-CPL, POP, CICE, PSAS, MIT, GFDL
Status: Approved-1
Verification: System test.
Notes: Not all components may support this option. Notes: overlap with Components.

CTL6.3 By alarm

It shall be possible to direct components to return to control at a specified alarm event.

Priority: 2
Source: CCSM-CPL, POP, CICE, PSAS, MIT
Status: Approved-2.
Verification: System test. Notes: overlap with Components.

CTL7 Cross-component scheduling

Scheduling relationships between multiple components.

52

CTL7.1 Exchange scheduling

It is possible for two components to schedule data exchanges at regular intervals.

Priority: 1
Source: CCSM-CPL, POP, CICE, PSAS, MIT, GFDL
Status: Approved-1.
Verification: System test.
Notes: Regularity is probably not a requirement: any semantics supported by TM:Alarm should be possible.
Notes: overlap with Components.

CTL7.2 Serial execution

It shall be possible to schedule components for serial execution.

Priority: 1
Source: CCSM-CPL, POP, CICE, PSAS, MIT, GFDL
Status: Approved-1.
Verification: System test. Notes: overlap with Components.

CTL7.3 Concurrent execution

It shall be possible to schedule components for concurrent execution.

Priority: 1
Source: CCSM-CPL, POP, CICE, PSAS, MIT, GFDL
Status: Approved-1.
Verification: Notes: overlap with Components.

CTL7.4 Forward coupling timestep

The coupling timestep between two components may be forward in time.

Priority: 2
Source: GFDL, MIT
Status: Approved-2.
Verification: System test.
Notes: i.e., given two components ��� and ��� ,

����� �� 	 � ���

��������������������
�� � � ���! (1)

� ��� �� 	 ����

��������������������
�� � ���� ! (2)

Notes: compress into notes.

CTL7.5 Backward coupling timestep

The coupling timestep between two components may be backward in time.

Priority: 2
Source: GFDL, MIT
Status: Approved-2.

53

Verification: System test.
Notes: i.e., given two components ��� and ��� ,

����� �� 	 � ���

����� ��������������
�� � ����� �� ! (3)

� ��� �� 	 ����

����� ��������������
�� � � ��� �� ! (4)

Notes: compress into notes.

CTL7.6 Forward-backward

The coupling timestep between two components may be forward-backward in time.

Priority: 2
Source: GFDL, MIT
Status: Approved-2.
Verification: System test.
Notes: i.e., given two components ��� and ��� ,

����� �� 	 � ���

����� ��������������
�� � � �� ! (5)

� ��� �� 	 � ��

����� ��������������
�� � � ��� �� ! (6)

Notes: compress into notes.

CTL8 Cross-component exchange

CTL8.1 Explicit exchange

It shall be possible to request an explicit data exchange.

Priority: 3
Source: PSAS (desired), MIT, GFDL
Status: Proposed.
Verification: System test.
Notes: When the scheduling timestep in CTL7 is consistent with explicit exchange. Notes: compress into notes.

CTL8.2 Implicit exchange

It shall be possible to request an implicit data exchange.

Priority: 3
Source: GFDL
Status: Proposed.
Verification: System test.
Notes: When the scheduling timestep in CTL7 is consistent with implicit exchange. What is one of these - CNH?
That is, communication would include the implicit sensitivity terms that occur, for example, in a tridiagonal
solver. Notes: compress into notes.

CTL9 Cross-component signals

Signalling is used for events that may occur within a component at unscheduled, or unpredictable intervals. Scheduled
events have already been dealt with in the cross-component requirements of TM:Alarm. Components should be able
to issue and trap signals.

54

CTL9.1 Checkpoint request

It shall be possible to send a signal to a component asking it to halt.

Priority: 1
Source: CCSM-CPL, PSAS, MIT, GFDL
Status: Approved-1.
Verification: System test. Notes: overlap with Components.

CTL9.2 Data request

It shall be possible to send a signal to a component asking for data at a specified time instant.

Priority: 2
Source: CCSM-CPL, PSAS, MIT, GFDL
Status: Approved-2.
Verification: System test. Notes: overlap with Components.

CTL10 Syntax

CTL10.1 Common syntax across platforms

The control syntax should be the same on all platforms.

Priority: 1
Source: CCSM-CPL, PSAS, MIT, GFDL
Status: Approved-1.
Verification: Code inspection.

CTL10.2 Performance

The control mechanism should be compatible with 100msec component cycling times.

Priority: 2
Source: MIT
Status: Approved-2.
Verification: System test.

55

Part III

Superstructure: Components

1 Authors, target codes and review team

Authors: Max Suarez, Cecelia DeLuca, Jay Larson

Review Date: 16 May, 2002

Target Codes Reviewers
GFDL-SPEC, BGRID, MOM4 Balaji
HIM Hallberg
CCSM-CPL Kauffman, Jones
CAM-FV, PSAS da Silva, Sawyer
WRF Michalakes
MIT-REG, MIT-CPL, ADJ Hill
NSIPP-ATM, NSIPP-OCN Suarez
NSIPP-ODA Keppenne
NCEP-ATM, SSI Iredell, Young

Other Reviewers: DeLuca, Neckels, Larson, Jacob

2 Component background

An important function of ESMF is to support the integration of complex computational modules developed by earth
scientists into larger models and data assimilation systems, and to facilitate the interoperability of these modules.
In the ESMF design, these integration functions are achieved by combining Couplers and Gridded Components into
Integrated Applications.

Gridded Components will contain the computational modules and will thus be the main arena for interaction
between computational scientists and the Framework. Couplers will provide all necessary functionality required to
integrate Gridded Components into a larger application (e.g., ocean and atmosphere components into a climate model).

Following the ESMF general design, Couplers and Gridded Components are to be implemented using an object-
oriented approach in which the data and actions of these components are encapsulated in ESMF specified ways.

2.1 Location

Couplers and Gridded Components, being key elements in the Framework’s integration functions fall in the Super-
structure. They will be invoked in ESMF specified ways by Integrated Applications and will, in turn, rely on other
Superstructure and Infrastructure elements in their internal design. Coupling between computational modules, for ex-
ample, often requires interpolation of data and its reorganization in memory. To perform these tasks, couplers will rely
on Superstructure Regridding methods, which in turn rely on the Infrastructure’s uniform implementation of various
machine memory organizations and user-chosen data decompositions.

2.2 Scope

Requirements on gridded components represent a compromise between the desire to facilitate their interoperability
and the need for computational modules to have essentially no restriction on their physical content or computational
approach. A fully interoperable framework would have to prescribe the actual physical quantities to be exchanges
by components, as well as placing strong inclusive and exclusive restrictions on the physics that they represent. The

56

General Requirements preclude ESMF from acheiving this “strong” interoperability. ESMF is intended for diverse
applications and must support the rapidly evolving models and data handling techniques. The scope of requirements
on components will thus be limited to the way in which data is exchange between them and some restriction on
how their internal data must be structured to access Framework services and to allow its instanziation by Integrated
Applications. They will not include requirements on what physical quantities components must provide or accept, or
what calculations they must perform.

57

CGC1 Component requirements

CGC2 Components

CGC2.1 Component names

Each component shall be associated with a name. If a name is not supplied by the user at creation, one will be assigned
by default. User-defined component names shall not conflict with names reserved for ESMF generic components.

Priority: 1
Source: Required by NSIPP, MIT, CCSM-CPL
Status: Approved-1.
Verification: Unit test.

CGC2.2 Creation

CGC2.2.1 Standard creation

It shall be possible to create a component based on a PE list or layout, and a set of other arguments that are optional
or component specific.

Priority: 1
Source: Required by NSIPP, MIT, CCSM-CPL, GFDL
Status: Approved-1.
Verification: Unit testing.

CGC2.2.2 Creation based on replication

It shall be possible to create a component by specifying an existing component to be replicated, an optional name, and
an optional PE list or layout. If no PE list or layout is supplied one from the component being replicated shall be used.

Priority: 2
Source: Required by NSIPP, MIT, GFDL(desired)
Status: Approved-2.
Verification: Unit testing.
Notes: A typical use would be to perform an ensemble of integrations within a single application. This is
required by applications that have tight coupling between ensemble members, such as ensemble Kalman Filter.

CGC2.2.3 Creation of subcomponents

It shall be possible for a component to create a subcomponent using the component creation methods above. The
subcomponent must be defined on a PE list or layout that is entirely contained within that of the component that
creates it.

Priority: 2
Source: Required by MIT, GFDL
Status: Approved-2.
Verification: Unit test.

CGC2.3 Interaction with subcomponents

A component shall be able to call any public method of its subcomponents. A component is responsible for coordinat-
ing the execution of its subcomponents, for example by ensuring that they are properly initialized, run and halted.

58

Priority: 2
Source: MIT, GFDL
Status: Approved-2.
Verification: Code inspection.

CGC2.4 Deletion

A component may be deleted, in which case it is expected to delete its subcomponents before deleting itself. The
component being deleted shall free any memory that it has allocated.

Priority: 2
Source: Required by NSIPP, MIT, GFDL.
Status: Approved-2.
Verification: Unit test.

CGC2.5 Operations

CGC2.5.1 Initialize

A component shall have a method that initializes its internal values.

Priority: 1
Source: Required by NSIPP, MIT, CCSM-CPL, GFDL.
Status: Approved-1.
Verification: System test.

CGC2.5.2 Run

A component shall have a run method that initiates its execution and allows the user to specify the running interval.

Priority: 1
Source: Required by NSIPP, MIT, CCSM-CPL, GFDL.
Status: Approved-1.
Verification: System test.

CGC2.5.3 Halt

A component shall have a halt method that saves its restart state and gracefully terminates its execution.

Priority: 1
Source: MIT, GFDL
Status: Approved-1.
Verification: System test.

CGC2.5.4 Prepare output exchange packets

A component shall provide a method that prepares an output exchange packet based on selections from its export state.

Priority: 1
Source: Required by MIT, CCSM-CPL, NSIPP, GFDL.
Status: Approved-2.
Verification: System test.

59

CGC2.5.5 Accept input exchange packets

A component shall provide a method that accepts an input exchange packet in conformance with its import state.

Priority: 1
Source: MIT, GFDL
Status: Approved-2.
Verification: System test.

CGC2.5.6 Write and restore from restart

A component shall be able to write its restart state and be able to reconstruct itself identically based on that state.

Priority: 1
Source: MIT, GFDL
Status: Approved-1.
Verification: System test.

CGC2.6 Queries

CGC2.6.1 Query name

A component shall be able to return its name.

Priority: 3
Source: MIT
Status: Proposed.
Verification:

CGC2.6.2 Query layout

A component shall be able to return the layout over which it is distributed, including its PE list and its communication
and data sharing mechanisms. Whether or not the following are in use and how they are each bound to PEs may be
queried: MPI processes, concurrent Unix processes, concurrent OpenMP threads, concurrent Posix threads.

Priority: 2
Source: CCSM-CPL, PSAS, MIT, GFDL
Status: Approved-2.
Verification:

CGC2.6.3 Query run status

Components shall provide a method that reports whether the component is initialized, running, halted, or in an error
condition.

Priority: 1
Source: NSIPP, MIT, GFDL
Status: Approved-1.
Verification:

60

CGC2.6.4 Query subcomponent layout

A component shall be able to return the layouts of its subcomponents.

Priority: 2
Source: MIT, GFDL
Status: Approved-2.
Verification:

CGC2.6.5 Query import state

A component shall be able to return a list and description of the data, such as field names and descriptions, that it
requires as input in order to run. This shall be provided in a standard format.

Priority: 1
Source: NSIPP, MIT, CCSM-CPL, POP, CICE, GFDL
Status: Approved-2.
Verification:

CGC2.6.6 Query export state

A component shall be able to return a list and description of the data that it can make available to other components.
This shall be provided in a standard format.

Priority: 1
Source: NSIPP, MIT, CCSM-CPL, POP, CICE, GFDL
Status: Approved-2.
Verification:

CGC2.6.7 Query state summary

Each component shall provide a query method that returns its run status (e.g. whether the component has been
initialized), the size of its restart state, if initialized, appropriate verification checksums, and any control parameters
that the component deems “application-settable.”

Priority: 2
Source: NSIPP
Status: Approved-2.
Verification:

CGC2.7 Query exchange packets

Given the name of an exchange packet, a component shall return a reference to that exchange packet. A component
may have multiple exchange packets defined.

Priority: 3
Source: Desired by MIT
Status: Proposed.
Verification:

61

CGC2.7.1 Query input datasets

A component shall be able to return a list of any input data files necessary for it to run. If this information is not
available it shall relay that information to the user.

Priority: 3
Source: MIT
Status: Proposed.
Verification:

CGC2.7.2 Query compute parameters

Insofar as it is possible, a component shall be able to return a description of the computing environment in which
it is being run, including computing architecture and compiler name and version, compile options, and numerical
precision.

Priority: 3
Source: MIT
Status: Proposed.
Verification:
Notes: This requirement may be extended and further detailed in the parameter specification requirements
document.

CGC2.7.3 Consolidated query responses

A component shall be able to direct queries to its subcomponents and return consolidated replies. For example, a
component shall be able to return a list of the names of all the subcomponents that it contains, a list of subcomponent
layouts, and an overall run status based on the individual run statuses of its subcomponents.

Priority: 3
Source: MIT, GFDL
Status: Approved-2.
Verification:

CGC3 Application components

In addition to the general requirements for a component described in CGC2, application components are required to
provide the following capabilities.

CGC3.1 Application initialize operation

An application shall provide a method that allocates and initializes resources, such as underlying libraries and any
global variables or buffer space, necessary to run an ESMF application.

Priority: 1
Source: MIT, DAO, GFDL
Status: Approved-1.
Verification:

62

CGC3.2 Queries

CGC3.2.1 Query case name

An application shall return its case name, the user-specified name for a particular run. If no case name is specified a
default will be assigned.

Priority: 3
Source: MIT, DAO
Status: Proposed.
Verification:

CGC3.2.2 Query case date

An application shall return the real-world date at which its execution began.

Priority: 3
Source: MIT
Status: Proposed.
Verification:

CGC4 Gridded components

In addition to the general requirements for a component described in CGC2, gridded components are required to
provide the following capabilities.

CGC4.1 Gridded components have one or more associated grids

A gridded component shall be associated with one or more grids. A default grid shall be associated with each gridded
component and shall default to the first grid created in the component. The default grid may be assigned.

Priority: 1
Source: NSIPP, GFDL, MIT
Status: Approved-1.
Verification:

CGC4.2 Creation

The creation method of a gridded component shall require as an argument either a fully created grid or the parameters
required to create a grid.

Priority: 1
Source: Required by NSIPP, MIT, CCSM-CPL, GFDL
Status: Approved-1.
Verification: Unit test.

CGC4.3 Queries

CGC4.3.1 Query grids

A gridded component can return a list of its grids.

Priority: 3
Source:
Status: Proposed. Verification: Unit test.

63

CGC4.3.2 Query default grid

A gridded component can return its default grid.

Priority: 2
Source: GFDL, MIT
Status: Approved-2.
Verification: Unit test.

CGC5 Coupler components

In addition to the general requirements for a component described in CGC2, coupler components are required to
provide the following capabilities.

CGC5.1 Coupler run operation

A coupler component shall provide a run method in which the data in an output exchange packet of a source component
is transformed and transferred to a destination component where it again is transformed into an input exchange packet.
This operation may occur at a given event or a set interval. Transforms may be user-defined, generic, or null, and
multiple transforms may be applied in succession.

Priority: 1
Source: NSIPP, MIT, GFDL
Status: Approved-1.
Verification: System test.

CGC5.1.1 Coupling operation limited to two components

A single coupling operation shall be limited to data transformation and transfer between two components.

Priority:
Source: NSIPP
Status: Rejected.
Verification:
Notes: We need to define coupling between more than two components, for example when broadcasting val-
ues to ensembles, generating ensemble means, or merging the spans of multiple components to interface with
another whose span is their union (e.g. combining ocean and land to form a complete interface with the atmo-
sphere).

CGC5.1.2 Unlimited number of coupling operations

No limit is placed on the number of coupling operations defined or executed between a pair of component or in an
application overall, other than computing resources.

Priority: 1
Source: MIT, GFDL
Status: Approved-1.
Verification: Unit test.

64

CGC6 General computational requirements

CGC6.1 Validity checking

Methods shall be provided to check the validity of components and coupling operations and report inconsistencies or
errors.

Priority: 2
Source: NSIPP
Status: Approved-2.
Verification: System test.

CGC6.2 Compute overhead

The component interface mechanisms need to be compatible with operation frequency as high as ten times per second
(i.e. the period during which no component is in an interface phase may be as short as 100msec).

Priority: 3
Source: MIT
Status: Proposed.
Verification: System test.

65

Part IV

Infrastructure Fields and Grids: Fields

1 Authors, target codes and review team

Authors: Cecelia DeLuca, Tony Craig, Chris Hill

Review Date: 23 April, 2002

Target Codes Reviewers
GFDL-SPEC, BGRID, MOM4 Balaji
HIM Hallberg
CAM-EUL, CLM Craig
CAM-FV, PSAS da Silva
POP, CICE Jones
WRF Michalakes
MIT-REG, MIT-CPL, ADJ Hill
NSIPP-ATM, NSIPP-OCN Suarez
NCEP-ATM, SSI Iredell, Young

Other Reviewers: DeLuca, Neckels, Larson, Jacob

2 Background

The capabilities most fundamental to ESMF are the efficient transformation and transferral of field data between
model components. Fields within a model component are frequently associated with the same physical grid (though
staggering may be different) and similarly decomposed in memory. Thus the basic currency exchanged between
components is a bundle of fields associated with the same grid, or simply a bundle.

2.1 Location

Fields and bundles are part of the Fields and Grids layer of the ESMF Infrastructure.

2.2 Scope

Fields may be defined in physical or spectral space, and may be scalar or vector.
Field and bundle operations are limited to configuration, manipulation and querying of attributes, accessing data,

setting and retrieving data values, I/O, and regridding. The first releases of ESMF will not provide differential or other
mathematical operators on fields; the framework may be extended to include such methods in the future.

3 Field summary of requirements

66

4 Field requirements

FLD1 Fields

FLD1.1 Creation

FLD1.1.1 Creation with data allocation

Fields may be created by specifying attributes, a grid, data array dimensions and descriptors, optional masks (e.g. for
active cells), and an optional I/O specification. In this case a field will allocate its own data. The grid passed into the
argument list is referenced and not copied.

Priority: 1
Source: CCSM-CPL, POP, CICE, CAM-FV, PSAS, MIT, WRF, GFDL.
Status: Approved-1.
Verification: Unit test.

FLD1.1.2 Creation with external data

Fields may be created as in FLD1.1.1 with a data array passed into the argument list. The data array is referenced and
not copied.

Priority: 1
Source: CCSM-CPL, POP, CICE, CAM-FV, PSAS, MIT, WRF, GFDL.
Status: Approved-1.
Verification: Unit test.

FLD1.1.3 Creation without data

Fields may be created as in FLD1.1.1 without allocating data or specifying an associated data array. In this case
specifying the grid parameters and data array dimensions may be deferred until data is attached.

Priority: 1
Source: CCSM-CPL, CAM-FV, PSAS, MIT, WRF, GFDL.
Status: Approved-1.
Verification: Unit test.

FLD1.1.4 Creation by indexing an existing field

Fields may be created by specifying some subset of the domain of an existing field. The user may specify whether the
original field’s data is copied or referenced. The grid is referenced. Staggering and mask of active/inactive cells may
be different in the original and new fields.

Priority: 2
Source: CCSM-CPL, CAM-FV, PSAS, MIT, WRF.
Status: Approved-2.
Verification: Unit test.

FLD1.1.5 Creation with remap

Fields may be created as a result of transposing, interpolating, or regridding an existing field. The original field’s data
is copied, but the target grid must already exist.

67

Priority: 2
Source: CCSM-CPL, MIT, WRF, GFDL.
Status: Approved-2.
Verification: Unit test.
Notes: The assumption here is that the grid is being altered, so it should be copied and not referenced. Implies
adjoint form.

FLD1.1.6 Creation by weighted combination

Fields may be created as the result of weighting (e.g. temporally or spatially) combinations of existing field values.
The original fields and the resulting field are defined on the same grid. The original field’s grid is referenced. Implies
adjoint form - maybe always self-adjoint (not sure) - CNH.

Priority: 2
Source: CCSM-CPL, MIT, GFDL.
Status: Approved-2.
Verification: Unit test.

FLD1.2 Local memory layout

It shall be possible to specify the local memory layout (major axis) of field data at field creation and to rearrange it
(assumes local copy).

Priority: 1
Source: CCSM-CPL, MIT, WRF, GFDL.
Status: Approved-1.
Verification: Unit test.

FLD1.3 Deletion

Fields may be deleted.

Priority: 1
Source: CCSM-CPL, CAM-FV, PSAS, MIT, WRF, GFDL.
Status: Approved-1.
Verification: Unit test.
Notes: This implies a reference count will be defined for grids.

FLD1.4 Attributes

The user can define a list of attribute name and value pairs, such as units, meters, for a field. The attributes may
be of character, real, integer, or logical type, or arrays of any of these.

Priority: 1
Source: CCSM-CPL, POP, CICE, CAM-FV, PSAS, MIT, WRF, GFDL.
Status: Approved-1.
Verification: Unit test.

FLD1.4.1 Default attributes

The only default attribute of a field will be a name.

68

Priority:
Source: CCSM-CPL, CAM-FV, PSAS, MIT, WRF.
Status: Rejected.
Verification: Unit test. Notes: For consistency with the IO requirements more than name may be mandatory
(Arlindo).

FLD1.4.2 Recommended attributes

ESMF shall provide a list of recommended attribute names and values.

Priority: 2
Source: CAM-FV, PSAS, MIT, WRF, GFDL.
Status: Approved-2.
Verification: Unit test.
Notes: This list likely to be based on the CF convention. For consisteny with IO these may be mandatory, not
required (Arlindo). (What does "mandatory, not required" mean - CNH).

FLD1.4.3 Add and delete attributes

Attributes may be added to or deleted from a given field. The name attribute cannot be deleted.

Priority: 2
Source: CCSM-CPL, POP, CICE, MIT, WRF, GFDL.
Status: Approved-2.
Verification: Unit test.

FLD1.4.4 Copy attributes

Attributes may be copied from one field to another.

Priority: 2
Source: CCSM-CPL, POP, CICE, CAM-FV, PSAS, MIT(desired), GFDL.
Status: Approved-2.
Verification: Unit test.

FLD1.4.5 Collective assignment of attributes

Attributes may be added to or deleted from a list of fields collectively.

Priority: 2
Source: CCSM-CPL, WRF.
Status: Approved-2.
Verification: Unit test.
Notes: The list of fields for which attributes are collectively defined does not need to be in the same bundle.

FLD1.5 Operations

FLD1.5.1 Remap data

It shall be possible to regrid, interpolate, or redistribute field data subject to the requirements for those operations.

Priority: 1
Source: CCSM-CPL, POP, CICE, CAM-FV, PSAS, MIT, WRF, GFDL.
Status: Approved-1.
Verification: Unit test.

69

FLD1.5.2 Return grid

A field shall be able to return a reference to its grid.

Priority: 1
Source: CCSM-CPL, CAM-FV, PSAS, MIT, WRF, GFDL.
Status: Approved-1.
Verification: Unit test.
Notes: It is assumed that a grid contains both a distributed grid and a physical grid.

FLD1.5.3 Return local memory layout

A field shall be able to return a description of its local memory layout.

Priority: 1
Source: CCSM-CPL, MIT, WRF, GFDL.
Status: Approved-1.
Verification: Unit test.

FLD1.5.4 Direct data access

Data arrays may be easily detached or attached to a field. When data is detached from a field it is not deallocated; the
user receives a reference to the data array. The field shall be able to identify whether a data segment is attached or
detached. The types of access supported shall be contiguous whole array or array subset and strided whole array or
array subset.

Priority: 1
Source: CCSM-CPL, POP, CICE, CAM-FV, PSAS, MIT, WRF, GFDL.
Status: Approved-1.
Verification: Unit test.
Notes: The expectation here is that if a user wants to directly access field data it must be detached from the field
first. (Unless they want to dereference the field, which is their own business...)

FLD1.5.5 Data access via copy

It shall be possible to retrieve an array that is a copy of all or a subset of the data values associated with a field.

Priority: 1
Source: CCSM-CPL, CAM-FV, PSAS, MIT, WRF, GFDL.
Status: Approved-1.
Verification: Unit test.

FLD1.5.6 Set

Field data may be set by specifying an index or coordinate range and a data value.

Priority: 1
Source: CCSM-CPL, CAM-FV, PSAS, MIT, GFDL.
Status: Approved-1.
Verification: Unit test.
Notes This data access is not direct, as with attach and detach - it is through the field interface. It enables setting
single data elements and arrays to a given single value, for example, for initialization.

70

FLD1.5.7 Write and restore from restart

Methods shall be provided that enable a field to write out restart data and to reconstruct itself identically from that
data.

Priority: 1
Source: CCSM-CPL, POP, CICE, CAM-FV, PSAS, MIT, GFDL.
Status: Approved-1.
Verification: Unit test.

FLD1.6 Queries

FLD1.6.1 Query name

A field shall be able to easily return its name. If the user does not provide a field name one will be created. Field
names must be unique within an address soace and it shall be possible to check this.

Priority: 1
Source: CCSM-CPL, MIT, GFDL.
Status: Approved-1.
Verification: Unit test.

FLD1.6.2 Query number of dimensions

A field shall be able to return the number of dimensions it has.

Priority: 1
Source: CCSM-CPL, CAM-FV, PSAS, MIT, WRF, GFDL.
Status: Approved-1.
Verification: Unit test.

FLD1.6.3 Query attributes

A field can return its list of attributes.

Priority: 1
Source: CCSM-CPL, CAM-FV, PSAS, MIT, GFDL.
Status: Approved-1.
Verification: Unit test.

FLD1.6.4 Query attributes by name

A field shall be able to return attribute values given a list of attribute names.

Priority: 1
Source: CCSM-CPL, POP, CICE, CAM-FV, PSAS, MIT, WRF, GFDL.
Status: Approved-1.
Verification: Unit test.

FLD1.6.5 Query number of attributes

A field shall be able to return the number of attributes it possesses.

Priority: 1
Source: CCSM-CPL, POP, CICE, CAM-FV, PSAS, MIT, GFDL.
Status: Approved-1.
Verification: Unit test.

71

FLD1.6.6 Query presence of data

It shall be possible to determine whether a field has associated data.

Priority: 1
Source: CCSM-CPL, POP, CICE, MIT, WRF, GFDL.
Status: Approved-1.
Verification: Unit test.

FLD1.6.7 Query number of local/global cells or gridpoints

A field may be queried for the number of local or global cells or gridpoints in its underlying grid.

Priority: 1
Source: CCSM-CPL, CAM-FV, PSAS, MIT, GFDL.
Status: Approved-1.
Verification: Unit test.

FLD2 Bundles

FLD2.1 Creation

FLD2.1.1 Creation using field list

It shall be possible to create a bundle with a field list, an optional I/O specification, and an identifier that specifies
whether the bundle is to be packed (contiguous data) or loose (noncontiguous data). Bundles within

Priority: 1
Source: CCSM-CPL, POP, CICE.
Status: Approved-1.
Verification: Unit test.

FLD2.1.2 Creation by indexing an existing bundle

It shall be possible to initialize a bundle that is a copy of an existing bundle, or a specified subset of the fields or
domain of an existing bundle. The grid associated with the bundle shall be referenced and not copied.

Priority: 1
Source: CCSM-CPL.
Status: Approved-1.
Verification: Unit test.

FLD2.1.3 Creation with remap

Bundles may be created as the result of a remapping operation on an existing bundle. The grid in this case is copied.

Priority: 1
Source: CCSM-CPL.
Status: Approved-1. Implies possible adjoint form
Verification: Unit test.

72

FLD2.2 Local memory layout

It shall be possible to specify the local memory layout (major axis, field interleaving) of data within a packed bundle.

Priority: 1
Source: CCSM-CPL.
Status: Approved-1.
Verification: Unit test.

FLD2.3 Deletion

Bundles may be deleted. Fields within a bundle will be deleted if they are not being used elsewhere.

Priority: 1
Source: CCSM-CPL.
Status: Approved-1.
Verification: Unit test.

FLD2.4 Operations

FLD2.4.1 Remap data

It shall be possible to regrid, interpolate, or redistribute bundle data subject to the requirements for those operations.

Priority: 1
Source: CCSM-CPL, POP, CICE.
Status: Approved-1.
Verification: Unit test.

FLD2.4.2 Insert and remove field

A field may be inserted into or removed from a bundle.

Priority: 1
Source: CCSM-CPL, POP.
Status: Approved-1.
Verification: Unit test.
Notes: Inserting a field into a bundle may result in a reallocation and copy if the bundle is packed.

FLD2.4.3 Direct data access

Data arrays may be easily detached or attached to a bundle. When data is detached from a bundle it is not deallocated;
the user receives a reference to the data array. The bundle shall be able to identify whether a data segment is attached
or detached. The type of access supported shall be contiguous whole array or offset by field.

Priority: 1
Source: CCSM-CPL, POP, CICE.
Status: Approved-1.
Verification: Unit test.

73

FLD2.4.4 Data access via copy

It shall be possible to retrieve an array that is a copy of all or a subset of the data values associated with a bundle.

Priority: 1
Source: CCSM-CPL.
Status: Approved-1.
Verification: Unit test.

FLD2.4.5 Set

Bundle data may be identified in its entirety or by index or coordinate and set to a single value, for example, for
initialization.

Priority: 1
Source: CCSM-CPL.
Status: Approved-1.
Verification: Unit test.

FLD2.4.6 Return field(s)

A bundle shall be able to return a pointer to a field indexed by name or pointers to all the fields that it contains.

Priority: 1
Source: CCSM-CPL, POP, CICE.
Status: Approved-1.
Verification: Unit test.

FLD2.4.7 Return grid

A bundle shall be able to return a pointer to its grid.

Priority: 1
Source: CCSM-CPL.
Status: Approved-1.
Verification: Unit test.
Notes: It is assumed that a grid contains both a distributed grid and a physical grid.

FLD2.4.8 Return local memory layout

A bundle shall be able to return a description of its local memory layout.

Priority: 1
Source: CCSM-CPL.
Status: Approved-1.
Verification: Unit test.

FLD2.4.9 Pack bundle

A bundle shall be able to create a copy of its field data that is locally contiguous.

Priority: 1
Source: CCSM-CPL
Status: Approved-1.
Verification: Unit test.

74

FLD2.4.10 Write and restore from restart

Methods shall be provided that enable a bundle to write out restart data and to reconstruct itself identically from that
data.

Priority: 1
Source: CCSM-CPL, POP, CICE.
Status: Approved-1.
Verification: Unit test.

FLD2.5 Queries

FLD2.5.1 Query bundle name

A bundle shall be able to return its name. If the user does not assign a name one will be assigned by default. All
bundle names within an address space must be unique, and it shall be possible to check this.

Priority: 1
Source: CCSM-CPL.
Status: Approved-1.
Verification: Unit test.

FLD2.5.2 Query field names

A bundle shall be able to return a list of field names.

Priority: 1
Source: CCSM-CPL.
Status: Approved-1.
Verification: Unit test.

FLD2.5.3 Query number of fields

A bundle shall be able to return the number of fields that it contains.

Priority: 1
Source: CCSM-CPL, POP, CICE.
Status: Approved-1.
Verification: Unit test.

FLD2.5.4 Query number of local/global cells or gridpoints

A bundle may be queried for the number of local or global cells or gridpoints.

Priority: 1
Source: CCSM-CPL.
Status: Approved-1.
Verification: Unit test.

FLD3 Field and bundle I/O

FLD3.1 Write

It shall be possible to write the data values of a field or bundle to a specified destination.

75

Priority: 1
Source: CCSM-CPL, POP, CICE, CAM-FV, PSAS, MIT, GFDL.
Status: Approved-1.
Verification: Unit test.
Notes: A single IO capability may be sufficient for this and the field restart requirement (Arlindo).

FLD3.2 Set destination

It shall be possible to easily customize the destination of a field or bundle write operation.

Priority: 1
Source: CCSM-CPL, POP, CICE, CAM-FV, PSAS, MIT, GFDL.
Status: Approved-1.
Verification: Unit test.
Notes: We should at least lay the foundation for URI type naming etc... (for both read and write).

FLD3.3 Set write frequency

It shall be possible to specify the frequency, using a number of timesteps or a time interval, at which either field or
bundle data is written. The default shall be no writes, and it shall be possible for the user to reset the default.

Priority: 1
Source: CCSM-CPL, POP, CICE, MIT, GFDL.
Status: Approved-1.
Verification: Unit test.

FLD3.4 Write indexed values

It shall be possible to specify and to easily reset a subset of field and bundle data and attributes to be written out.

Priority: 2
Source: CCSM-CPL, MIT, GFDL.
Status: Approved-2.
Verification: Unit test.

FLD3.5 Set precision

It shall be possible to specify the precision at which either field or bundle data is written.

Priority: 1
Source: CCSM-CPL, POP, CICE, CAM-FV, PSAS, MIT, GFDL.
Status: Approved-1.
Verification: Unit test.

FLD4 General computational requirements

FLD4.1 Validity checking

It shall be possible to check fields and bundles for internal consistency, and to disable the checks for optimization
purposes.

76

Priority: 2
Source: CCSM-CPL, CAM-FV, PSAS, MIT, GFDL.
Status: Approved-2.
Verification: Unit test.

77

Part V

Infrastructure Fields and Grids: Physical Grids

1 Authors, target codes and review team

Authors: Robert Hallberg, Arlindo da Silva, Matt Harrison

Review Date: 16 April, 2002

Target Codes Reviewers
GFDL-SPEC, BGRID, MOM4 Balaji
HIM Hallberg
CCSM grids Craig, Jones
CAM-FV, PSAS da Silva
WRF Michalakes
MIT-REG, MIT-CPL, ADJ Hill
NSIPP-ATM, NSIPP-OCN Suarez
NCEP-ATM, SSI Iredell

Other Reviewers: DeLuca, Neckels, Larson, Jacob

2 Background

Earth system models use a variety of different discrete grids to represent continuous physical space. The ESMF
physical grid is responsible for maintaining information about physical coordinate based discretizations of simulation
domains. Components may include and use additional grid information internally, however, the only physical grid
information that framework operates on will come through physical grid elements.

The information that the framework needs to represent in physical grids is quite extensive. Coupled components
need to be able to provide physical grid information that is sufficiently detailed for regridding operators (see Regrid)
which transfer field data between the components. The primary ESMF codes employ finite-difference and finite-
volume grids, spectral grids, unstructured land-surface grids and ungridded observational networks. This requires the
physical grid to support an extensive range of metric terms (e.g. grid spacings, areas and volumes) and grid masks.

The grids used in Earth system models evolve continually. The physical grid of ESMF will be extensible, so that
support for future grids can be added to the framework over time.

2.1 Location

The physical grid is a part of the "Fields and Grids" portion of the ESMF infrastructure layer. The physical grid
interacts closely with the index spaces in the distributed grid facility; the creation of a distributed grid precedes the
creation of a physical grid. Most Fields exist at locations described via physical grids. Regrid typically uses physical
grid information. The ESMF Control superstructure element supports the passing of physical grid information between
components. Field values with different physical grid settings and belonging to different components can be exchanged
through the Coupler element of the superstructure.

2.2 Scope

Physical grids do not cover domain decomposition or specification of grid topology; these are covered by distributed
grids. Also, although most fields in ESMF have a natural physical grid associated with them, there are some cases
where a physical grid is not relevant. For example a hypothetical assimilation system optimization scheme could be

78

Figure 9: Sketches representing various key horizontal, physical grids that ESMF will need to support. The set includes
grids that are represented in functional form (for example Spherical Harmonics based grids), grids that are regular but
that are typically represented as numerical values (for example the four curvilinear orthognal grids in the right panel)
and grids for which no underlying functional form exists. These latter grids are illustrated in the two lower panels in
the left column. One panel (middle left) depicts a land surface grid, its grid layout typically reflects catchment basin
topography, the other panel (lower left) illustrates a independent set of grid locations that is associated with a set of
floats drifting in the ocean. The family of grids illustrated encompasses many other common grids that are not shown,
for example cartesian and cylindrical grids.

adapted into an ESMF component. Many optimization schemes work in a linear-algebra space that is far removed from
the underlying physical space, so fields that are operated on by this component might not have a realizable physical
grid.

2.3 Examples

Gridding is a fumdamental aspect of models supported by ESMF. Figure 9 shows a number of example horizontal grids
that must be supported by ESMF. Figure ?? illustrates a subset of the vertical gridding schemes that will be supported
by ESMF. For components to interoperate they will need to be able to exchange detailed information representing
specific configurations of the grid types shown in the figure.

For example, under ESMF an atmospheric component employing a spectral algorithm with spherical harmonic
basis functions could be coupled together with a land surface component using a catchment area based grid and with
an ocean circulation component using a rotated pole grid. As discussed in the ESMF Regrid requirements chapter ??,
exchanging information between these components, under appropriate conservation side-conditions, requires detailed
information about the grid discretization. For this example the information that is required includes such items as

the areas of each of the cells of the land grid and their spatial extent,

the truncation level of the spherical harmonic series in the atmospheric model and the functional form of used to
define the spherical harmonic basis functions

the land and sea grid cell locations and areas in the ocean model associated with both terms in the momentum
equations and thermodynamic terms.

Figure 9 also shows so-called “ungridded” information. Examples of “ungridded” data in ESMF derive from
ingestion of observations into components. Ingesting and comparing to observational measurements entails working
with grids that are associated with point wise and track measurements, for example

an assimilation system might need to sample flow simulated in an atmospheric component in a manner consistent
with radiosonde balloon netowrk measurements or with satellite track data

an ocean state estimation system might need to sample and analyze fields in a manner consistent with ship and
satellite track or current meter observations.

In these examples both horizontal and vertical physical grid remappings may be required, in order to represent simu-
lated data in the observational space and vice-versa.

79

3 Physical grid requirements

PG1 Physical locations

A mechanism shall be provided for describing physical locations in space in 1, 2, or 3 dimensions, including both
specification of points and of ranges.

Priority: 1.
Source: Required by CAM-EUL, CLM, CCSM-CPL, POP, CICE, CAM-FV, PSAS, MIT, WRF, GFDL.
Status: Approved-1.
Verification: System test.

PG1.1 Horizontal locations

PG1.1.1 Horizontal coordinates

Physical domains may use Cartesian, spherical, or cylindrical coordinate systems in the horizontal directions. Units for
these coordinates are meters (for Cartesian), degrees of latitude and longitude (for spherical), and meters and degrees
for the radius and angle in cylindrical coordinates.

Priority: 1.
Source: Required by CAM-EUL, CLM, CCSM-CPL, POP, CICE, NCEP-GSM, NCEP-SSI, CAM-FV, PSAS,
MIT, GFDL
Status: Approved-1.
Verification: Code inspection.
Notes: This suggestion follows common practice, but is an explicit exception to the requirement that MKS units
are used by ESMF codes wherever units must be assumed.

PG1.1.2 Horizontal locations may be points

Horizontal locations may be specified as a pair of real values in the order (X,Y) or (longitude, latitude).

Priority: 1.
Source: Required by POP, CICE, Regrid, NCEP-GSM, NCEP-SSI, PSAS, MIT, WRF, GFDL.
Status: Approved-1.
Verification: Unit test.

PG1.1.3 Horizontal locations may be polygonal regions

Horizontal locations may be specified to be regions by providing the number of vertices and the list of the vertex
points. Vertex points must be specified either clockwise or counterclockwise around the region. The vertex points may
be redundant.

Priority: 1.
Source: Required by POP, CICE, Regrid, PSAS, MIT, GFDL.
Status: Approved-1.
Verification: Unit test.
Notes: Fundamental to allowing conservative interpolation, and for a precise description of data locations.

PG1.1.4 Horizontal regions may have central points

Both a central point and a region may be specified in describing a horizontal location. The points may provide a
convenient nominal location, even when a value actually pertains to a region.

80

Priority: 1.
Source: Required by POP, CICE, Regrid, PSAS, MIT, GFDL.
Status: Approved-1.
Verification: Unit test.
Notes: Many models mix finite difference and finite volume concepts.

PG1.1.5 Horizontal regions may be circular

A horizontal location may be specified by adding a nominal radius of influence to the central point. This may be
the radius of a Gaussian distribution of influence. The exact interpretation of this radius is the responsibility of user-
provided software.

Priority: 2.
Source: Required by PSAS, MIT, GFDL.
Status: Approved-2.
Verification: Unit test.
Notes: This is necessary for describing certain observational data streams.

PG1.1.6 Paths between grid locations may be specified

A method for determining the path connecting grid locations is required. This path would be used to accurately com-
pute intersections for Regridding, lengths of cell sides, grid cell areas and a variety of other grid metrics. A linear
approximation between points is a proper assumption for cartesian grids and for computing sides of latitude/longitude
or reduced grid cells. A linear approximation is also adequate in many other cases and would be a logical default
choice. The most accurate solution would permit users to pass a subroutine which provides analytic or highly-accurate
discrete forms of the grid Jacobian (the matrix of partial derivatives of the physical coordinates with respect to log-
ical coordinates). An additional possibility might internally support analytic forms like great circles or higher-order
approximations (eg quadratic approximation to the cell side given a midpoint in addition to the two endpoints).

Priority: 1.
Source: Regrid, required by codes that use conservative interpolation.
Status: Approved-1.
Verification: Unit test.
Notes: Necessary for allowing conservative interpolation.

PG1.2 Vertical locations

PG1.2.1 Vertical coordinates

Physical domains may use a variety of vertical coordinates, including pressure, height, density, isotherms, sigma,
other terrain-following, or any other vertically monotonic quantity. In addition, a user-interpretable vertical proxy
(such as a satellite measurement channel) may be used. Units of this coordinate must be self-consistent. (See the CF
convention for a full discussion of options for vertical coordinates at http://www.cgd.ucar.edu/cms/eaton/netcdf/CF-
20010629.htm)

Priority: 1.
Source: Required by CAM-EUL, POP, NCEP-GSM, NCEP-SSI, CAM-FV, PSAS, MIT, WRF, GFDL.
Status: Approved-1.
Verification: Code inspection.

81

PG1.2.2 Vertical locations may be points

Priority: 1.
Source: Required by CAM-EUL, POP, NCEP-SSI, CAM-FV, PSAS, MIT, WRF, GFDL.
Status: Approved-1.
Verification: Unit test.

PG1.2.3 Vertical locations may be regions

Vertical locations may be specified by providing the values of the top and bottom bounding points. Such regions have
the same extent regardless of the order in which the bounding points are specified.

Priority: 1.
Source: Required by POP, MIT, GFDL.
Status: Approved-1.
Verification: Unit test.

PG1.2.4 Vertical regions have central points

Both a central point and a region may be specified in describing a vertical location. The points may provide a conve-
nient nominal location, even when a value actually pertains to a region.

Priority: 1.
Source: Required by POP, NCEP-GSM, PSAS, MIT, GFDL.
Status: Approved-1.
Verification: Unit test.
Notes: Many models mix finite difference and finite volume concepts.

PG1.2.5 Vertical locations may have radii of influence

A vertical location may be specified by adding a nominal radius of influence to the central point. This may be the radius
of a Gaussian distribution of influence. The exact interpretation of this radius is the responsibility of user-provided
software.

Priority: 3.
Source:
Status: Proposed.
Verification: Unit test.
Notes: This appears superfluous. It is more than enough to specify a range in 1D - Arlindo.

PG1.2.6 Vertical locations may include lopped cells

Vertical locations may include a region whose bounds vary between the horizontal corners of a region.

Priority: 2.
Source: Required by MIT, NSIPP, POP, GFDL/MOM.
Status: Approved-1.
Verification: Unit test.

PG2 Location streams

Streams of locations are used to describe the physical (and potentially temporal) locations associated with streams of
data. Streams of locations differ from physical grids (see below) in that there are no concept of neighboring values,
topology, covering a space, or of locations being exclusive.

82

Priority: 1.
Source: Required by NCEP-SSI, PSAS, MIT, GFDL.
Status: Approved-2.
Verification: System test.

PG2.1 Location streams may be created

Priority: 1.
Source: NCEP-SSI, PSAS, MIT, GFDL.
Status: Approved-2.
Verification: Unit test.
Notes:

PG2.2 Location streams may be destroyed

Priority: 1.
Source: NCEP-SSI, PSAS, MIT, GFDL.
Status: Approved-2.
Verification: Unit test.
Notes:

PG2.3 Location streams may be copied

Given an existing location stream, a new stream may be generated with a new name and possibly a different length.

Priority: 2.
Source: PSAS, MIT, GFDL.
Status: Approved-2.
Verification: Unit test.

PG2.4 Reading streams

Location streams may be read from files.

Priority: 1.
Source: Required by NCEP-SSI, MIT, GFDL.
Status: Approved-2.
Verification: Unit test.
Notes: I no longer find this necessary. It is sufficient to have an IO requirement for fields (which can be defined
on location streams) - Arlindo. - ditto CNH (but it is a requirement!).

PG2.5 Writing streams

Location streams may be written to files.

Priority: 1.
Source: Required NCEP-SSI, MIT, GFDL.
Status: Approved-2.
Verification: Unit test.
Notes: See previous - Arlindo.

83

PG2.6 Background grid

A location stream may have associated with it an underlying physical grid, so that each location stream element may
be uniquely associated with a single grid cell. (A single grid cell may contain multiple location stream elements.)

Priority: 1.
Source: Required by NCEP-SSI, PSAS, MIT, GFDL
Status: Approved-2.
Verification: Unit test.
Notes: This is necessary for such operations as halo updates on a location stream.

PG2.7 Location stream attributes

PG2.7.1 Fixed length location streams

Location streams may be of fixed length, specified at the time of generation.

Priority: 2.
Source: Required by PSAS, MIT, GFDL.
Status: Approved-2.
Verification: Unit test.

PG2.7.2 Extensible length location streams

Location streams may be of extensible length (e.g. a linked list), with an initial length specified at the time of genera-
tion.

Priority:
Source:
Status: Rejected (are we sure?? - CNH, RWH).
Verification: Unit test.
Notes: Are we sure we want to reject? Could they just be not as optimised. Imagine a location stream that is
representing Lagrangian elements in a decomposed fluid simulation. It could be useful to be able to add particles
as needed - CNH.

PG2.7.3 Global attributes: location stream name

Each location stream has a unique name by which it can be referred.

Priority:
Source:
Status: Rejected.
Verification: Unit test.
Notes: I think this should be deferred - CNH.

PG2.7.4 Location stream registry

Upon creation, the name and a pointer to each location stream shall be stored in a registry. A pointer to any location
stream may be determined given its name.

Priority:
Source:
Status: Rejected.
Verification: Unit test.
Notes: I think this should be deferred - CNH.

84

PG2.7.5 Global attributes: number of dimensions

A location stream may be queried for the number of dimensions, which is set at the time of creation of the stream.

Priority: 2.
Source: Required by PSAS, MIT, GFDL.
Status: Approved-2.
Verification: Code inspection.

PG2.7.6 Global attributes: dimension names

Each dimension has a name, which may be set and queried.

Priority: 2.
Source: Required by PSAS, MIT, GFDL.
Status: Approved-2.
Verification: Unit test.

PG2.7.7 Global attributes: dimension units

A location stream contains the units of each dimension, which may be set and queried.

Priority: 2.
Source: Required by PSAS, MIT, GFDL.
Status: Approved-2.
Verification: Unit test.

PG2.7.8 Global attributes: text or numeric attributes

A location stream may have an arbitrary number of text or numeric attributes, which may be added, set and queried.
Each attribute has a text name by which it can be queried. Also, a location stream can be queried for a list of all global
attribute names.

Priority: 2.
Source: Required by NCEP-SSI, MIT, GFDL.
Status: Approved-2.
Verification: Unit test.
Notes: Not quite sure what this is. Again, since we can define fields on location streams, not sure we need this
here - Arlindo - ditto CNH (but it is a requirement!).

PG2.7.9 Global attributes: number of elements and number in use

The number of elements in a location stream is available. For a fixed length stream, both the total number of elements
and the number of elements before the last active element location may be queried.

Priority: 2.
Source: Required by NCEP-SSI, PSAS, MIT, GFDL.
Status: Approved-2.
Verification: Unit test.

85

PG2.7.10 Global attributes: null element location value

Each location stream may indicate whether a particular location is active.

Priority:
Source:
Status: Rejected.
Verification: Code inspection.
Notes: This functionality may be obtained with user-defined element attributes, but this use will not be explicitly
supported by ESMF.

PG2.7.11 Elements in stream have similar properties

All elements in a location stream will have the same numbers of dimensions, use the same physical coordinates, the
same units, the same element attributes (attributes at some locations may be missing).

Priority: 2.
Source: MIT.
Status: ????.
Verification: Code inspection.
Notes: MAJOR OBJECTION. Where did this come from? I’d like to be able to represent the whole obser-
vation vector for a given synoptic time on a single location stream. While data have horizontal coordinates
in (lat,lon), vertical coordinates may vary widely (winds at 10m above sfc, temperature at 500 hPa, to name a
few). So, each element would contain the (lat,lon,lev,levunits); it is conceivable that at some point one would
need (lat,lon,lev,xunits,yunits,zunits) - Arlindo. NO STATUS ASSIGNED WE NEED TO REVISIT THIS -
CNH/RWH.

PG2.7.12 Elements include values of locations

Methods shall be provided to set and query each element’s location.

Priority: 1
Source: Required by PSAS, MIT, GFDL.
Status: Approved-2.
Verification: Unit test.

PG2.7.13 Elements may be copied

Methods shall be provided to copy all information from one element to another. When elements are copied from one
location stream to another, all corresponding properties and attributes will be copied, while missing attributes will be
set to missing or a user-provided default.

Priority: 1
Source: Required by PSAS, GFDL, MIT.
Status: Approved-2.
Verification: Unit test.

PG2.7.14 Elements may have attributes

Text or data attributes may be attached to each element. These attributes may be null for any particular element.
Methods shall be provided to set and query each element’s attribute. Element attributes may use standard names to
promote interoperability.

86

Priority: 3
Source:
Status: Proposed.
Verification: Unit test.
Notes: I don’t see the point of this as one can define fields on location streams - Arlindo.

PG2.7.15 Location streams may contain null (discarded) elements

Some elements within a location stream may be set to be invalid. This may be a way to specify the elements that are
irrelevant for a particular subdomain.

Priority:
Source:
Status: Rejected.
Verification: Unit test.
Notes:

PG2.7.16 Location streams may be queried for valid elements

Location streams may be queried to obtain an ordered list of the indices of (or pointers to) all valid elements.

Priority:
Source:
Status: Rejected.
Verification: Unit test.

PG2.8 Location stream methods requiring registries of dependent data

If all of the data streams that use a particular location stream are known, additional methods for manipulating location
streams and associated data streams are possible.

Priority:
Source:
Status: Rejected.
Verification: Unit test.
Notes: I don’t know what this means - CNH.

PG2.8.1 Registry of data streams

Each location stream includes a registry of all the data streams that rely upon a location stream. This is necessary for
location streams and data streams to be manipulated in compatible ways.

Priority:
Source:
Status: Rejected.
Verification: Unit test.
Notes: See previous req (what is a "data stream") - CNH.

PG2.8.2 Extensible location streams may be extended

Priority:
Source:
Status: Rejected.

87

Verification: Unit test.
Notes: Who rejected extensible location streams? Who proposed them? - CMD

PG2.8.3 Extensible location streams may be shortened

Priority:
Source:
Status: Rejected.
Verification: Unit test.

PG2.8.4 Extensible length location streams may be converted to fixed length

Priority:
Source:
Status: Rejected.
Verification: Unit test.

PG2.8.5 Fixed length location streams may be converted to extensible length

Priority:
Source:
Status: Rejected.
Verification: Unit test.

PG2.8.6 Fixed length streams may have null elements moved to end

Priority:
Source:
Status: Rejected.
Verification: Unit test.

PG3 Physical grids

A physical grid identifies a set of locations in physical space. Local physical grids provide the locations of each of the
cells/points associated with the range of indices in a distributed grid. A local physical grid is associated with a single
distributed grid. It may have undistributed dimensions that are not present in the underlying distributed grid. Multiple
local physical grids may be derived from the same global, undistributed physical grid.

Physical grids may be purely horizontal, purely vertical, or 3-dimensional. Structured grids assume that adjacent
locations in index space share boundaries in a predictable way. Unstructured grids also have concepts of neighboring
cells, but the relative indices of neighbors are unpredictable.

Priority: 1.
Source: Required by CAM-EUL, CLM, CCSM-CPL, POP, CICE, NCEP-GSM, NCEP-SSI, CAM-FV, PSAS,
MIT, WRF, GFDL.
Status: Approved-1.
Verification: System test.

PG3.1 Reading grids

Given a distributed grid, a local physical grid can be read from a standard file containing a global physical grid. If no
distributed grid is provided, the global physical grid will be read in.

88

Priority: 1.
Source: Required by CAM-EUL, CLM, CCSM-CPL, POP, CICE, CAM-FV, PSAS, MIT, GFDL.
Status: Approved-1.
Verification: Unit test.

PG3.2 Writing grids

Physical grids can be output to standard files.

Priority: 1.
Source: Required by CCSM-CPL, POP, CICE, CAM-FV, PSAS, MIT, GFDL.
Status: Approved-1.
Verification: Unit test.
Notes:

PG3.3 Local physical grids may be internally generated

For an arbitrary number of points in the global domain of the associated distributed grid, it may be possible to specify
an algorithm for internally determining the local physical grid.

Priority: 1.
Source: Required by POP, CICE, NCEP-GSM, NCEP-SSI, CAM-FV, PSAS, MIT, WRF, GFDL.
Status: Approved-1.
Verification: Unit test.

PG3.4 Null physical grid creation

It shall be possible to create any data objects associated with a physical grid without providing the data that a physical
grid will contain.

Priority: 3
Source: Required by CCSM-CPL, MIT.
Status: Proposed.
Verification: Unit test.

PG3.5 Physical grid query.

Methods shall be provided to query a physical grid for all information in contains.

Priority: 1
Source: Required by CAM-EUL, CLM, CCSM-CPL, POP, CICE, NCEP-GSM, NCEP-SSI, CAM-FV, PSAS,
MIT, WRF, GFDL.
Status: Approved-1.
Verification: Unit test.

PG3.6 Cell specification

Physical grids shall specify both the locations of cell vertices, and the locations of cell centers.

Priority: 1.
Source: Required by POP, CICE, Regrid, NCEP-GSM, MIT, WRF, GFDL.
Status: Approved-1.
Verification: Unit test.
Notes: Many models mix finite difference and finite volume concepts.

89

PG3.7 Refinement

A physical grid may be interpolated to generate a physical grid with an equivalent span at finer or coarser resolution.
Methods should be provided to accomplish such interpolation via a simple interface that uses the Regrid facility.

Priority: 1.
Source: Required by MIT(handled by regrid), GFDL(handled by regrid)
Status: Approved-1.
Verification: Unit test.
Notes: Necessary for runtime configurable resolution. Also, note that there may be a Catch-22 here, as Regrid
would naturally provide the facility for Regridding, but Regrid will typically require the target physical grid for
creating the Regridding. This requirement is also explicitly addressed within the Regrid requirement document.

PG3.8 Regeneration

A new local physical grid may be generated for a given distributed grid from another physical grid. The span of the
source physical grid may be the same as or a superset of the span of the target.

Priority: 1.
Source: MIT, GFDL.
Status: Approved-1.
Verification: Unit test.
Notes: Necessary for support of transposes, or of moving nests.

PG3.9 Distributed grid reference

A local physical grid may be queried for the distributed grid upon which it is based.

Priority: 2.
Source: MIT, GFDL.
Status: Approved-2.
Verification: Unit test.

PG3.10 Horizontal coordinate independent of vertical

Horizontal physical grid locations can be assumed independent of the vertical coordinate. The horizontal metrics,
however, may be function of the vertical coordinate, as in thick-shell spherical coordinates.

Priority: 1.
Source: Any Objections?
Status: Approved-1.
Verification: Code inspection.
Notes: If this assumption can be made, it greatly simplifies implementation. No widely used counterexamples
are known.

PG3.11 Vertical coordinate potentially dependent on horizontal.

Vertical physical grid locations may be functions of the horizontal coordinates, or may be independent of them.

Priority: 1.
Source: GFDL-MOM4 (required), NSIPP, POP, CAM-FV, PSAS, MIT, GFDL
Status: Approved-1.
Verification: Code inspection.
Notes: This is necessary to support, for example, partial cells in Z-coordinate ocean models.

90

PG3.12 Dimension extension

A new physical grid may be generated by adding a dimension to an existing physical grid. The span of the source
physical grid may be the same as or a superset of the span of the target. For a local physical grid, the new dimension
will be independent of the underlying distributed grid, and both local physical grids share the same distributed grid.
The new dimension may be in any order with respect to existing dimensions.

Priority: 2
Source: CCSM-CPL, GFDL, MIT
Status: Approved-2
Verification: Unit test
Notes: Valuable for separating generation of vertical and horizontal coordinates.

PG3.13 Dimension reduction

A new physical grid may be generated by removing a dimension from an existing physical grid. For a local physical
grid, if the dimension that is removed is one that is present in the original underlying distributed grid, an appropriately
reduced distributed grid must also be provided. Otherwise the new local physical grid is based on the same distributed
grid as the original physical grid.

Priority: 2
Source: CCSM-CPL, GFDL, MIT
Status: Approved-2
Verification: Unit test
Notes:

PG3.14 Arbitrary dimensional physical grids

Physical grids may have an arbitrary number of dimensions.

Priority:
Source: ?
Status: Rejected.
Verification: Unit test.
Notes: If supported, this facility would dramatically complicate implementation, without adding much func-
tionality.

PG3.15 1- 2- or 3- dimensional local physical grids

Local physical grids may have up to 3 dimensions, but must have at least as many dimensions as the underlying
distributed grid.

Priority: 1
Source: Required by CAM-EUL, CLM, CCSM-CPL, POP, CICE, NCEP-GSM, NCEP-SSI, CAM-FV, PSAS,
MIT, WRF, GFDL.
Status: Approved-1.
Verification: Unit test.

PG3.16 Index order

A physical grid may use any index order (XYZ, XZY, etc.). Methods shall be provided to specify the order upon
creation and to query the order of a physical grid. It shall also be possible (if not efficient) to extract physical grid
information in any index order.

91

Priority: 1
Source: Please list required orders in Fortran notation. CCSM-CPL(XY), CAM-EUL (XYZ, XZY, ZXY),
POP(XYZ), CICE(XY), NCEP(XYZ,XZY,YXZ,ZXY,ZYX), WRF(XYZ,XZY,YXZ,ZXY,ZYX), MIT(XYZ, XZY,
ZXY, YZX), PSAS (XYZ,XZY), GFDL (XYZ, ZXY, XZY, YZX)
Status: Approved-1.
Verification: Unit test.
Notes: Necessary for support of transposes.

PG3.17 Dimension reordering

A new local physical grid may be generated with reordered dimensions from another local physical grid. If the new
dimension order is inconsistent with the original distributed grid, a new consistent local physical grid must also be
provided. To be consistent, all dimensions present in a distributed grid must have the same relative order in the local
physical grid. (i.e. if the distributed grid uses XY, local physical grids using XYZ, ZXY, or XZY are all consistent,
while one using ZYX is not.)

Priority: 2
Source: GFDL, MIT
Status: Approved-2.
Verification: Unit test.
Notes: Necessary for support of transposes.

PG3.18 Location index determination

A method shall be provided to return the cell index of a location. An option shall be provided to either create an
exception for any location outside of the valid range of the coordinate system, or to produce a gracefully treatable
return value if the location is (1) outside of the range of the local physical grid, or (2) outside of the range of the global
physical grid. The index locations should be floating point numbers to facilitate interpolation.

Priority: 1
Source: Required by CCSM-CPL, POP, Regrid, MIT, GFDL.
Status: Approved-1.
Verification: Unit test.

PG3.19 Index location determination

A method shall be provided to return the physical locations from a physical grid of floating point index coordinates.
Any index in the global physical grid may be used, although there may be performance differences between points
that are on and off of the local physical grid.

Priority: 1
Source: Regrid (maybe - depending on implementation).
Status: Approved-1.
Verification: Unit test.

PG3.20 Horizontal physical grids

PG3.20.1 Physical grids map projections

Physical grids may be generated from a number of standard map projections, including traditional and Mercator grids
on a sphere, rotated latitude-longitude, tripolar, and Gaussian cylindrical grids. Additional requested grids include
cubed-sphere, polar stereographic, and Lambert conformal projections.

92

Priority: 1.
Source: Required by POP, CICE, NCEP-GSM, NCEP-SSI, PSAS, MIT, GFDL.
Status: Approved-1.
Verification: Unit test.
Notes: Perhaps some of these should be read in from a file, rather than internally generated - CNH? The
underlying (background?) grid associated with a location stream may be in one of these map projections -
Arlindo.

PG3.20.2 Unstretched cartesian internal generation

A simple interface shall be provided to internally generate a uniform Cartesian coordinate physical grid, given the
lengths of the edges of a square domain.

Priority: 1.
Source: MIT, GFDL.
Status: Approved-1.
Verification: Unit test.

PG3.20.3 Latitude-longitude internal generation

A simple interface shall be provided to internally generate a uniform (constant grid-spacing in degrees) latitude-
longitude physical grid, given the extent of the domain in latitude and longitude.

Priority: 1.
Source: CCSM-CPL, CAM-FV, PSAS, MIT, GFDL.
Status: Approved-1.
Verification: Unit test.

PG3.20.4 Stand-alone global physical grid generation examples

Stand-alone software examples shall be provided to demonstrate the generation of a global physical grid file on a
stretched latitude-longitude grid, a rotated latitude-longitude grid and a tripolar grid.

Priority: 2.
Source: GFDL, NCAR, DAO, MIT.
Status: Approved-2
Verification: Unit test.
Notes: These are intended both for real use, and for use as patterns in the creation of physical grid files for more
complicated grids. The above list may be altered, extended or reduced following discussions.

PG3.20.5 Supported topologies

Supported horizontal grid topologies will include logically rectangular grids that are reentrant (periodic) in 0, 1, or 2
directions, northern and southern tripolar (Murray 1996), sphere, icosahedral, and unstructured grids. Unstructured
arrays of logically rectangular grids [for cubed-sphere (Rancic et al. 1996), reduced grids, and arbitrary nesting] will
also be supported.

Priority: 1.
Source: Required by POP, CICE, NCEP-GSM, CAM-FV, PSAS, MIT, GFDL.
Status: Approved-1.
Verification: Unit test.
Notes: Topologies are intrinsic to both distributed grids and physical grids. Since the topology information is so
widely used in distributed grids, and since distributed grids are used to initiate local physical grids, it is perhaps
reasonable to make topology a property of a distributed grid, which is then inherited and checked by a local
physical grid.

93

PG3.20.6 Local physical grid topology consistency checking

A mechanism shall be provided to verify that the locations of the points in a local physical grid are consistent with the
topology of the underlying distributed grid. An exception shall be generated in case of inconsistency.

Priority: 1.
Source: Required by CCSM-CPL, POP, CICE, CAM-FV, PSAS, MIT, GFDL.
Status: Approved-1.
Verification: Unit test.

PG3.20.7 Areas tile sphere

It may be specified that grid areas should be calculated using algorithms that guarantee that the grid exactly (algorith-
mically to within 1 part in

��� � �) tiles the sphere (or a portion of it).

Priority: 2.
Source: GFDL (required), Regrid, CAM-FV, PSAS, MIT.
Status: Approved-2.
Verification: Unit test.
Notes: Needed to permit exact conservation of fluxes between models.

PG3.20.8 Staggered grids

Staggered grids will be supported as a single physical grid.

Priority: 1.
Source: Required by POP, CICE, CAM-FV, PSAS, MIT, GFDL.
Status: Approved-1.
Verification: Code inspection.
Notes: Standard requirement of a staggered grid.

PG3.20.9 Available subgrids

For locally quadrilateral horizontal grids, information shall be available for each of the 4 related subgrids. That is if a
t-cell is centered at a tracer point, cells centered on the east face, north face, and northeast corner of the t-cell will also
be provided in the case of a NorthEast underlying distributed grid.

Priority: 2.
Source: GFDL, MIT (required), POP, CICE.
Status: Approved-1.
Verification: Code inspection.
Notes: Standard requirement of a staggered grid.

PG3.20.10 Extensible grid point representations

It is not anticipated that all possible grids will be included in ESMF. It must, therefore, be relatively straightforward to
add new grids to the framework and to share those grid "extensions" amongst the framework community. For example
it should be possible to add an icosahedral grid.

Priority: 2
Source: Required by POP(future icosahedral), CICE(future), PSAS, MIT, GFDL.
Status: Approved-2.
Verification: Code inspection.
Notes: This is basic to the extensibility of ESMF.

94

PG3.21 Horizontal functional representations

A spectral horizontal description may be used. More generally, the horizontal structure of information may be given
by specifying functional decompositions.

Priority: 2
Source: MIT, GFDL.
Status: Approved-2.
Verification: Unit test.

PG3.21.1 Horizontal Fourier grids

Cartesian Fourier grids will be supported. Associated with this grid are the wavenumbers (in units of ��� �) of each of
the elements on the grid.

Priority: 3
Source: GFDL (desired)
Status: Proposed.
Verification: Unit test.

PG3.21.2 Horizontal spherical harmonics grids

Spherical harmonics grids will be supported. Associated with this grid are the wavenumbers (nondimensional m,n) of
each of the elements on the grid. At a minimum, rhomboidal and triangular truncations will be supported.

Priority: 1.
Source: Required by CCSM-CPL, CAM-EUL, NCEP-GSM, NCEP-SSI, GFDL.
Status: Approved-1.
Verification: Unit test.

PG3.21.3 Mixed physical and Fourier grids

Mixed physical and Fourier grids will be supported. In particular, a grid on the sphere that is latitude in one dimension
and Fourier zonal wavenumber (nondimensional m) in the other dimension will be supported.

Priority: 1
Source: Required by NCEP-SSI, NCEP-GSM, GFDL.
Status: Approved-1.
Verification: Unit test.

PG3.21.4 Extensible horizontal functional representations

The physical grid design should not preclude the user from using alternative functional horizontal representations,
such as spectral elements.

Priority: 3
Source:
Status: Proposed.
Verification: Code inspection.
Notes: This is basic to the extensibility of ESMF.

95

PG3.22 Vertical functional representations

PG3.22.1 Vertical user defined functions

The physical grid design should not preclude the user from using functional vertical representations, such as EOFs,
eigenfunctions, and finite elements. The vertical coordinate of such a grid might be a wavenumber or a similar quantity.
(???THIS PART MAY BE MORE APPROPRIATE FOR Regrid...) Support will provided for accepting a user supplied
matrix or function that would transform the function into some vertical physical space. Regridding would then be able
to perform the transform, the inverse transform, and the adjoint transform.

Priority: 1.
Source: NCEP-SSI.
Status: Approved-1.
Verification: Code inspection.

PG3.23 Area overlap checking

A method shall be provided to check that physical grid cells do not overlap.

Priority: 2.
Source: Required by GFDL, CCSM-CPL, Regrid, MIT.
Status: Approved-2.
Verification: Unit test.
Notes: Standard self-consistency test.

PG3.24 Physical grid attributes

PG3.24.1 Physical grid name

Each physical grid has a unique name by which it can be referred. If no name is specified, one will automatically be
generated.

Priority: 2
Source: Required by CCSM-CPL, MIT.
Status: Approved-2.
Verification: Unit test.

PG3.24.2 Number of dimensions

A physical grid may be queried for the number of dimensions, which is set at the time of its creation. Corresponding
local and global physical grids have the same number of dimensions.

Priority: 1.
Source: Required by CCSM-CPL, Regrid, PSAS, MIT, GFDL.
Status: Approved-1.
Verification: Unit test.

PG3.24.3 Dimension names

Each dimension has a name, which may be set and queried. If no name is specified for a dimension, a name will be
automatically generated.

Priority: 1.
Source: CCSM-CPL, PSAS, MIT, GFDL.
Status: Approved-1.
Verification: Unit test.

96

PG3.24.4 Dimension lengths

A physical grid may be queried for the local or global lengths of each of its dimensions.

Priority: 1.
Source: Required by CCSM-CPL, Regrid, PSAS, MIT, GFDL.
Status: Approved-1.
Verification: Unit test.

PG3.24.5 Dimension attributes and units

A physical grid contains the units of each dimension, which may be set and queried. Dimensions may also have
additional named attributes.

Priority: 1.
Source: Required by CCSM-CPL, Regrid, PSAS, MIT, GFDL.
Status: Approved-1.
Verification: Unit test.

PG3.24.6 Global attributes

A physical grid may have an arbitrary number of text or numeric attributes, which may be added, set and queried.
Each attribute has a text name by which it can be queried. Also, a physical grid can be queried for a list of all global
attribute names.

Priority: 2.
Source: Required by CCSM-CPL, PSAS, MIT, GFDL.
Status: Approved-2.
Verification: Unit test.

PG4 Grid metrics

Grid metrics are all of the lengths (or partial derivatives of distances with index number) and related quantities required
to do a variety of calculations. All metrics are a function of the grid and must be static with time. Metric-like fields
that vary with time (thicknesses in isopycnal/isentropic coordinates or node locations in fully Lagrangian codes) are
not handled by the physical grid.

Priority: 1
Source: Required by POP, CICE, MIT, GFDL.
Status: Approved-1
Verification: System test.

PG4.1 Calculation of metrics

All metrics may be calculated from grid locations.

Priority: 1.
Source: Required by MIT, GFDL.
Status: Approved-1.
Verification: Unit test.

97

PG4.2 Reading metrics

All metrics may be read from a standard grid file.

Priority: 1.
Source: Required by POP, CICE, MIT, GFDL.
Status: Approved-1.
Verification: Unit test.

PG4.3 MKS metric units

Metrics have units of m or � � , or other appropriate MKS units.

Priority: 1.
Source: Standard MKS requirement?
Status: Approved-1.
Verification: Code inspection.
Notes: Does MKS allow things like Pascals? or is that SI - CNH. Some metrics may not have units i.e. scale
factors with latitude etc... - CNH.

PG4.4 Available metrics

All metrics are optional. In a particular instance of a physical grid it shall be possible to specify which metric terms
are available. Typically, available metric information includes an extensive list of grid lengths, cell areas, and the angle
between logical and physical north. Some functionality (e.g. certain Regridding) may be limited if certain common
metric terms are omitted.

Priority: 1.
Source: POP, CICE, MIT, GFDL.
Status: Approved-1.
Verification: Code inspection.
Notes: All models require some subset of this information.

PG4.5 On-demand metrics

In cases where one metric can be generated internally either from grid information or from other metrics or from
another physical grid, a method may be provided to create that metric field only once it is clear that it will be needed.

Priority: 3
Source: POP(desired), MIT, GFDL.
Status: Approved-2.
Verification: Code inspection.
Notes: With extensive metric information, this may be necessary to save space.

PG4.6 Query by name

It shall be possible to query for a reference to a metric field by name.

Priority: 1
Source: MIT, GFDL
Status: Approved-1.
Verification: Unit test.

98

PG4.7 Standard metric naming convention

A standard metric naming convention will be specified or established to facilitate the widespread use of metric in-
formation. Individual applications need not follow this convention, but may not achieve full functionality without
it.

Priority: 2
Source: GFDL, MIT
Status: Approved-2.
Verification: Code inspection.

PG4.8 Dimensionality of metrics

In cases where metric terms are independent of one or more dimensions, they may be stored in arrays that omit those
dimensions.

Priority: 2
Source: GFDL/HIM, POP, CICE, MIT.
Status: Approved-2.
Verification: Unit test.
Notes: This may be necessary for adequate cache/register performance. This may need to be done at compile
time?

PG4.9 Available structured horizontal quadrilateral grid metrics

Available metric information may include an extensive list of grid lengths, cell areas, and the angle between logical
and physical north.

Priority: 1.
Source: GFDL, POP, CICE, MIT.
Status: Approved-1.
Verification: Code inspection.
Notes: All using quadrilateral horizontal models require some subset of this information.

PG4.9.1 Cell areas

Cell areas may be available for each of the 4 related subgrids.

Priority: 1.
Source: GFDL (required), POP(some), CICE(some), MIT.
Status: Approved-1.
Verification: Code inspection.

PG4.9.2 Half-edge lengths

Each of the 8 half-edge lengths may be available for each of the 4 related subgrids. Since neighboring cells share
edges, it is desirable (although it violates the proposed CF convention) to include only 4 fields.

Priority: 2.
Source: GFDL/MOM (required), MIT.
Status: Approved-2.
Verification: Code inspection.

99

PG4.9.3 Center-to-edge distances

Each of the 4 center to edge distances may be available for each of the 4 related subgrids.

Priority: 2.
Source: GFDL/MOM (required), MIT.
Status: Approved-2.
Verification: Code inspection.

PG4.9.4 Full-edge lengths

Each of the 4 edge lengths may be available for each of the 4 related subgrids. Since neighboring cells share edges, it
is desirable (although it violates the proposed CF convention) to include only 2 fields.

Priority: 2
Source: GFDL/HIM (required), POP, CICE, MIT
Status: Approved-2
Verification: Code inspection.

PG4.9.5 Edge-to-edge distances

Both of the cell edge to edge distances may be available for each of the 4 related subgrids.

Priority: 2.
Source: GFDL/HIM (required), MIT.
Status: Approved-2.
Verification: Code inspection.

PG4.9.6 Center-to-corner distances

Each of the 4 center to corner distances may be available for each of the 4 related subgrids.

Priority: 3.
Source: MIT.
Status: Proposed.
Verification: Code inspection.
Notes: This is used in some E-grid implementations.

PG4.9.7 Cell orientation

The angle at the cell center between logical and physical north may be available for each of the 4 related subgrids.

Priority: 2.
Source: GFDL (required), POP, CICE, Regrid, MIT.
Status: Approved-2.
Verification: Code inspection.
Notes: This is required for almost any non-latitude-longitude grid.

PG4.10 Available unstructured horizontal grid metrics

Available metric information may include cell areas, edge lengths, and distances between adjacent cell centers.

100

Priority: 2.
Source: Land Model?
Status: Approved-2.
Verification: Code inspection.
Notes: All using unstructured horizontal grids require some subset of this information.

PG4.11 Vertical metrics

Available metric information may include spacing between cell centers and faces, in units consistent with the vertical
coordinate.

Priority: 1.
Source: Required by all.
Status: Approved-2.
Verification: Code inspection.
Notes: All models require some subset of this information.

PG4.12 Cell volumes

Available metric information may include 3-D cell volumes (or masses). This is not intended for use with models for
which this quantity varies with time.

Priority: 1.
Source: GFDL/MOM, MIT (required), POP
Status: Approved-2.
Verification: Code inspection.

PG4.13 Methods for calculating metrics

Metrics may be calculated by either standard or user-provided algorithms. The following subrequirements provide a
partial list of such algorithms, which may be augmented later.

Priority: 2.
Source: Required by POP, CICE, MIT, GFDL.
Status: Approved-2.
Verification: Unit test.
Notes: This is basic to the extensibility of ESMF.

PG4.13.1 Jacobian metric calculation

Metrics may be calculated based on user-provided grid Jacobians [the matrix of partial derivatives of the physical
coordinates with respect to logical coordinates (i.e. index space)], either in discrete form or as a series of function
pointers.

Priority: 3
Source: Regrid (desired).
Status: Proposed.
Verification: Unit test.

PG4.13.2 Spline metric calculation

Metrics may be calculated by discrete estimates of the grid Jacobians based upon the discrete grid locations.

101

Priority: 2
Source: Regrid.
Status: Approved-2.
Verification: Unit test.

PG4.13.3 Distance-based metric calculation

Metrics may be calculated from distances (Great Circle on a sphere) between the point locations of a physical grid.

Priority: 3.
Source:
Status: Proposed.
Verification: Unit test.
Notes: This is basic to the extensibility of ESMF.

PG4.14 Additional metrics

It shall be possible for a user to specify additional metric terms to be associated with a physical grid.

Priority: 2.
Source: CCSM-CPL, MIT, GFDL.
Status: Approved-2.
Verification: Unit test.
Notes: This is basic to the extensibility of ESMF.

PG5 Grid masks

Grid masks are logical arrays on a grid that indicates whether the various points on the grid are a part of a physically
similar subdomain. For example, masks are used to indicate which points are a part of the ocean and which are land.
Masks are also important for nested applications.

Priority: 1.
Source: Required by POP, CICE, NCEP-GSM, NCEP-SSI, MIT, WRF, GFDL.
Status: Approved-2.
Verification: System test.

PG5.1 Arbitrary number of masks

A physical grid may have an arbitrary number of masks associated with it.

Priority: 2.
Source: Required by POP, MIT, GFDL.
Status: Approved-2.
Verification: Code inspection.

PG5.2 Mask names

Each of the masks associated with a physical grid is associated with a unique name. A method shall be specified to
return a pointer to a mask given its name.

Priority: 2.
Source: Required by MIT, GFDL.
Status: Approved-2.
Verification: Unit test.

102

PG5.3 Category masks

Masks may have an arbitrary number of categories. (e.g. 1 for points in the Atlantic, 2 for the Pacific, 3 for the
Mediterranean, etc.)

Priority: 2.
Source: POP, CICE, MIT, GFDL.
Status: Approved-2.
Verification: Unit test.

PG5.4 Multiplicative masks

Masks may consist only of the values 0 or 1, for multiplicative masking.

Priority: 2.
Source: Required by POP, MIT, GFDL.
Status: Approved-2.
Verification: Unit test.

PG5.5 Mask complement

A method shall be provided to generate the complement of a mask.

Priority: 3.
Source: MIT, GFDL.
Status: Proposed.
Verification: Unit test.

103

Part VI

Infrastructure Fields and Grids: Distributed Grids

1 Authors, target codes and review team

Authors: V. Balaji, Will Sawyer, John Michalakes

Review Date: 7 May, 2002

Target Codes Reviewers
GFDL-SPEC, BGRID, MOM4 Balaji
HIM Hallberg
CAM-EUL, CLM Bettge
CAM-FV, PSAS da Silva, Sawyer
POP, CICE Jones
WRF Michalakes
MIT-REG, MIT-CPL, ADJ Hill
NSIPP-ATM, NSIPP-OCN Suarez
NCEP-ATM, SSI Iredell

Other Reviewers: DeLuca, Neckels, Larson, Jacob

2 Distributed grid background

3 Background

Scalable implementations of finite-difference codes are generally based on decomposing the model domain into sub-
domains that are distributed among processors. These domains may then be obliged to share data at their boundaries if
data dependencies are merely local, or may need to acquire information from the global domain if there are extended
data dependencies, as in the spectral transform, or in elliptic solvers. The distributed grid is a category within ESMF
used for expressing, and performing operations that involve, dependencies among data distributed across processors.

3.1 Scope

The discrete representation of data fields within a model component begins with the definition of physical grid associ-
ated with the data. The data fields thus get defined as arrays, which are then distributed among processors. The indices
associated with array locations in each dimension thus define a global index space. The distributed grid encompasses
all the ESMF infrastructure operations associated with the index-space representation of data. Operations requiring
knowledge of actual physical locations and distances between locations belong to the physical grid, and are found in
the documents associated with it.

3.2 Location

The gridded component, physical grid and distributed grid elements form a closely-linked conceptual chain. The
distributed grid also provides the interface to the machine layer where the scheduling, communication and memory
management primitives reside. Applications should rarely need to reach beyond the distributed grid layer for direct
invocation of the communication primitives.

104

3.3 Summary

A gridded component is associated with one or more global physical grids. Distributing a global physical grid across
PEs generates a physical grid element, which is associated with a a single distributed grid element, distributed across
some or all of the PEs associated with the component. The distributed grid has operations to define domain decom-
positions on the pelist, and given user-specified data dependencies, it can define topologies, i.e. connectivities on the
pelist for scheduling communication. It contains all the operations for sharing data according to those dependencies.
This includes familiar operations like the halo update and data transpose. It can perform global reductions (sum, max,
min, maxloc, minloc) on distributed data. The sum has a bitwise exact option. It can create a copy of the global data
on one or more PEs, and scatter a global array across a PElist.

The distributed grid will perform sign flips, vector component interchanges, and redundancy checks as needed on
certain types of grids (e.g tripolar grid and cubed-sphere).

Operations within the distributed grid do not include those which are potentially dependent on grid metrics. For
instance, certain kinds of averaging operations are extremely simple on regular grids. These are metric-dependent on
irregularly spaced grids, and are hence considered to belong to the physical grid.

105

4 Distributed grid requirements

This part covers all the requirements for defining, querying and relating grid distributions or domain decompositions.
The PElist and the global domain are assumed retrievable (from Control and GriddedComponent respectively). Here
we set down requirements that apply to all grids. The requirements specific to certain grid types follow in Part VII.

DG1 Grid definition

DG1.1 Generation of a layout

Given a global domain and a PElist, there will be methods to derive an appropriate layout of PEs in multiple dimen-
sions.

Priority:
Source: Required by MIT.
Status: Proposed.
Verification: Unit test.

DG1.1.1 Subdivide a layout

Subdivide a layout. All distributed grid operations shall work on such a sub-layout.

Priority:
Source: Required by NCEP-SSI, MIT.
Status: Proposed.
Verification: Unit test.

DG1.2 User-specified layout

It will be possible to override the internally generated layout above by direct user specification.

Priority: 3.
Source: Required by MIT.
Status: Proposed.
Verification: Unit test.

DG1.3 1D decomposition

ESMF permits 1D domain decomposition, i.e. the distribution of a (possibly multidimensional) array over a 1D layout.

Priority: 1.
Source: CAM-FV, NSIPP, CAM-EUL, CLM, CCSM-CPL, NCEP-GSM, NCEP-SSI, MIT, WRF.
Status: Proposed.
Verification: Unit test.
Notes: probably can be treated as a special case of 2D with no loss of generality or performance.

DG1.3.1 Index order

1D domain decomposition may apply to any of the three spatial dimensions, on data arrays specified in any index
order (XYZ, XZY, etc).

106

Priority:
Source: Get detailed list of sources here for different index orders: full generality is potentially a lot of work.
CAM-FV: (XY, XYZ, XZY). Consistently decomposed blockwise in Y.
CCSM-CPL: (XY)
NCEP-GSM: spectral (YXZ) decomposed cyclically on X; grid (XZY) decomposed cyclically on Y
NCEP-SSI: spectral (background error) (T,YX,ZT) decomposed on X; spectral (transform) (T,YX,ZT) decom-
posed on ZT; grid (transform) (T,Y,X,ZT) decomposed on ZT; ungridded obs (T,YX,ZT) decomposed variable
blocked on YX
MIT: (XYZ) blocked along X or Y.
WRF: (XY, YX, XYZ, YZX, XZY, ZXY)
Status: Proposed.
Verification: Unit test.
Notes: In CAM-FV dynamics, 4D tracer areas are XYZT or possibly XZTY, where T is the tracer dimension.
In the physics there are cases of T in the second dimension. The CAM chunking mechanism brings up several
additional indexing orders (needs to be documented by other teams)
In the NCEP-SSI, tracers (T) are split into 2 different dimensions.

DG1.4 2D decomposition

ESMF permits 2D domain decomposition, i.e. the distribution of a (2- or more dimensional) array over a 2D layout.

Priority: 1.
Source: CAM-FV, NSIPP, CAM-EUL, CLM, CCSM-CPL, POP, CICE, NCEP-GSM, NCEP-SSI, MIT, WRF.
Status: Proposed.
Verification: Unit test.
Notes: Should NOT be treated as a special case of 3D! CAM-FV has been extended for 2D decomposition, but
it is not used by default. A region concept is required e.g. decomp. could be blocked in X and Y and regions.
Regions are always separated tiles.

DG1.4.1 Index order

2D domain decomposition may apply to any two of the three spatial dimensions, on data arrays specified in any index
order (XYZ, XZY, etc).

Priority: 1.
Source: Get detailed list of sources here for different index orders: full generality is potentially a lot of work.
CAM-FV (XYZ, XZY, XYZT, perhaps XZTY, others for chunked physics); The decomposition is blockwise in
X-Y for physics and blockwise in Y-Z for dynamics.
CCSM-CPL: (XY)
POP (XY), CICE (XY)
NCEP-GSM: spectral (semi-implicit) (ZYX) decomposed blocked on Y and X; spectral (transform) (YXZ)
decomposed cyclically on X and blocked on Z; grid (transform) (XYZ) decomposed cyclicaly on Y and blocked
on Z; grid (physics) (ZXY) decomposed cyclicaly on X and Y.
NCEP-SSI: grid (T,Y,X,ZT) decomposed variable blocked on Y and X
MIT: XYZ blocked in X, Y or XY, variable sizes and holes
WRF: (XY, YX, XYZ, YZX, XZY, ZXY)
Status: Proposed.
Verification: Unit test.

DG1.4.2 1D distributed arrays associated with a 2D decomposition

Within a 2D decomposition, it must be possible for arrays to be distributed along a single axis of distribution.

107

Priority: 1.
Source: Required by CAM-FV (2D decomposition), NSIPP, CAM-EUL, CLM, CCSM-CPL, POP, MIT.
Status: Proposed.
Verification:
Notes: i.e given a 2D decompsition in (i,j), it must be possible to have arrays that are functions of (i,j),
(i,j,k), etc but also (j,k). CAM-FV: needed for 2D decomposition, which not the default.

DG1.5 3D decomposition

ESMF permits 3D domain decomposition, i.e. the distribution of a (3- or more dimensional) array over a 3D layout.

Priority:
Source: Anyone?
Status: Proposed.
Verification:
Notes: 4D not foreseen for CAM-FV at this time.

DG1.6 Generation of domain decomposition

Given a global domain and a layout, there will be methods to assign each point in the domain to one PE for computa-
tion.

Priority:
Source: Requirements for specific flags to control the decomposition must be added here. CAM-EUL, CLM,
CCSM-CPL, POP, CICE, NCEP-GSM, NCEP-SSI, MIT.
Status: Proposed.
Verification:
Notes: In multi-threaded applications, the PE assignment is done only for each “MPI process”. Additional
threaded PEs work on partitions within these computational domains.

The partitions do not necessarily have a PE associated with it. The partitions may define a task queue from
which PEs assigned to threads pop tasks. The pool of PEs available for threading is drawn from the associated
PE list, of which not all are part of the layout.

Threads can be mapped on to an addressable node, which can consist of multiple PEs. The main thing I’m
trying to arrive at is that the partitioning into threads is independent of assignment to PEs. Principally, one must
be able to define an arbitrary number of partitions organized into a queue, off which shared-memory execution
threads can pop tasks as resources get freed. - VB

Thread partitioning (and all PEs) should be included in the layout and not a separate partitioning specification.
This will make queries simpler and the programming interface across a variety of machines more consistent. -
CMD.

DG1.7 User-specified domain decomposition

It will be possible to override the internally generated domain decomposition above by direct user specification of
domain extents.

Priority: 1.
Source: CAM-FV, CAM-EUL, CLM, CCSM-CPL, POP, CICE, NCEP-GSM, NCEP-SSI, MIT, WRF.
Status: Proposed.
Verification: Unit test.
Notes: WS: there will there be a fairly wide spectrum of decomposition create methods, with varying degrees of
user specification, e.g. less specific “distributed a 3-D XYZ array over a 2-D layout in a block-cyclic manner”),
or more user-specified (“map the global domain to the following PE and local indices”).

108

DG1.8 Domain masks

It shall be possible to mask domains from the computation: i.e generate a domain decomposition where one or more
exclusive domains are assigned to no PE.

Priority:
Source: POP, CICE , MIT.
Status: Proposed.
Verification: Unit test.
Notes: Possibly useful in an ocean model when a decomposition of the sphere yields entire exclusive domains
containing only land points.

Not the same mask as in Req. DG10.2.1.

DG1.9 Generation of grid topology

Given the data dependencies of the numerics, ESMF will be capable of computing the connectivities required for data
sharing and synchronization of exclusive domains across a distributed grid.

Priority: 1.
Source: CAM-FV, CAM-EUL, CLM, CCSM-CPL, POP, CICE, NCEP-GSM, NCEP-SSI, MIT.
Status: Proposed.
Verification: Unit test for specific cases.
Notes:

DG1.10 Validity of grid topology

Given a data dependency specification, ESMF will be capable of asserting whether or not a given distributed grid
topology is conformant with that pattern.

Priority: 2.
Source: Required by MIT.
Status: Proposed.
Verification: Unit test for specific cases.
Notes: This would be very useful. Why doesn’t anybody want it? - CNH

DG1.11 Periodic boundary conditions

ESMF will treat periodic boundary conditions along any spatial axis as a particular kind of topological feature. It will
be possible to specify this as input information for grid topology generation.

Priority: 1.
Source: CAM-FV, CAM-EUL, CLM, CCSM-CPL, POP, CICE, MIT, WRF
Status: Proposed.
Verification: Unit test, code inspection.
Notes: It is natural to treat this as a distributed grid feature, rather than having separate edge detection code in
applications. There is more than one way to treat LBCs in a distributed grid: these will be spelt out anon.

DG2 Grid information retrieval

DG2.1 Exclusive domain retrieval

DG2.1.1 Domain extents

It shall be possible to retrieve the size of a exclusive domain along each axis of decomposition.

109

Priority: 1.
Source: CAM-FV, NSIPP, CAM-EUL, CLM, CCSM-CPL, POP, CICE, NCEP-GSM, NCEP-SSI, MIT, WRF.
Status: Proposed.
Verification: Unit test.

DG2.1.2 Domain begin and end indices

It shall be possible to retrieve the beginning and ending indices of an exclusive domain along each axis of decomposi-
tion.

Priority: 1.
Source: CAM-FV, NSIPP, CAM-EUL, CLM, CCSM-CPL, POP, CICE, MIT, WRF
Status: Proposed.
Verification: Unit test.

DG2.1.3 Domain index list

It shall be possible to retrieve the full index list of an exclusive domain along each axis of decomposition.

Priority: 1.
Source: NCEP-GSM, NCEP-SSI, MIT.
Status: Proposed.
Verification: Unit test.
Notes:

DG2.1.4 Maximum domain extent

It shall be possible to retrieve the maximum size along each axis of decomposition of all the exclusive domains in the
distributed grid.

Priority: 1.
Source: CAM-EUL, CLM, CCSM-CPL, POP, CICE, NCEP-GSM, NCEP-SSI, MIT.
Status: Proposed.
Verification: Unit test.
Notes:

DG2.1.5 Exclusive domain list

ESMF methods will be provided to retrieve the list of exclusive domains associated with each PE of a distributed grid.

Priority:
Source: CCSM-CPL, POP, MIT
Status: Proposed.
Verification:
Notes: Besides being able to retrieve one’s own domain information, the full list of domains is also required for
certain operations.

DG2.2 Local domain retrieval

DG2.2.1 Domain extents

It shall be possible to retrieve the size of a local domain along each axis of decomposition.

110

Priority: 1.
Source: CAM-FV, NSIPP, CAM-EUL, CLM, CCSM-CPL, POP, CICE, NCEP-GSM, NCEP-SSI, MIT, WRF.
Status: Proposed.
Verification: Unit test.

DG2.2.2 Domain begin and end indices

It shall be possible to retrieve the beginning and ending indices of a local domain along each axis of decomposition.

Priority: 1.
Source: Required by CAM-FV, NSIPP, CAM-EUL, CLM, CCSM-CPL, POP, CICE, MIT, WRF.
Status: Proposed.
Verification: Unit test.

DG2.2.3 Domain index list

It shall be possible to retrieve the full index list of a local domain along each axis of decomposition.

Priority: 1.
Source: Required by NCEP-GSM, NCEP-SSI, MIT.
Status: Proposed.
Verification: Unit test.

DG2.2.4 Maximum domain extent

It shall be possible to retrieve the maximum size along each axis of decomposition of all the local domains in the
distributed grid.

Priority: 1.
Source: Required by CCSM-CPL, POP, CICE, NCEP-GSM, NCEP-SSI, MIT.
Status: Proposed.
Verification: Unit test.

DG2.2.5 Index translation for globally non-conformant local domains

Where the local array allocation is not globally-conformant, ESMF will have methods to translate the local indices to
globally-conformant indices.

Priority:
Source: POP, CICE, MIT (desired).
Status: Proposed.
Verification:
Notes: It is possible (using array lower bound specifications) to generate a globally conformant array allocation:
such that if Madras is point (80,13) in the global grid, it will be (80,13) on the local domain of any decompo-
sition. Where this is not done, there must be methods to translate local indices to globally conformant indices.
CAM-FV should be globally conformant. This would be a useful option, but its not required by current MIT
code - CNH.

DG2.2.6 Local domain list

ESMF methods will be provided to retrieve the list of local domains associated with each PE of a distributed grid.

111

Priority:
Source: CCSM-CPL, POP, CICE, MIT.
Status: Proposed.
Verification:
Notes: Besides being able to retrieve one’s own domain information, the full list of domains is also required for
certain operations.

DG2.3 Memory domain retrieval

DG2.3.1 Domain extents

It shall be possible to retrieve the size of a memory domain along each axis of decomposition.

Priority: 1.
Source: CAM-FV, NSIPP, CAM-EUL, CLM, CCSM-CPL, POP, CICE, NCEP-GSM, NCEP-SSI, MIT, WRF.
Status: Proposed.
Verification: Unit test.

DG2.3.2 Domain begin and end indices

It shall be possible to retrieve the beginning and ending indices of a memory domain along each axis of decomposition.

Priority: 1.
Source: Required by CAM-FV, NSIPP, CAM-EUL, CLM, CCSM-CPL, POP, CICE, MIT, WRF.
Status: Proposed.
Verification: Unit test.

DG2.3.3 Domain index list

It shall be possible to retrieve the full index list of a memory domain along each axis of decomposition.

Priority: 1.
Source: Required by NCEP-GSM, NCEP-SSI, MIT.
Status: Proposed.
Verification: Unit test.

DG2.3.4 Maximum domain extent

It shall be possible to retrieve the maximum size along each axis of decomposition of all the memory domains in the
distributed grid.

Priority: 1.
Source: Required by CCSM-CPL, POP, CICE, NCEP-GSM, NCEP-SSI, MIT.
Status: Proposed.
Verification: Unit test.

DG2.3.5 Memory domain list

ESMF methods will be provided to retrieve the list of memory domains associated with each PE of a distributed grid.

Priority:
Source: CCSM-CPL, POP, CICE, MIT.
Status: Proposed.

112

Verification:
Notes: Besides being able to retrieve one’s own domain information, the full list of domains is also required for
certain operations.

DG2.4 Global domain retrieval

DG2.4.1 Domain extents

It shall be possible to retrieve the size of a global domain along each axis of decomposition.

Priority:
Source: CCSM-CPL, POP, CICE, NCEP-GSM, NCEP-SSI, MIT, WRF.
Status: Proposed.
Verification: Unit test.
Notes: CAM-FV: the size of the global domain is known a priori and does not need to be retrieved.

DG2.4.2 Domain begin and end indices

It shall be possible to retrieve the beginning and ending indices of the global domain along each axis of decomposition.

Priority:
Source: CCSM-CPL, POP, CIC, MIT, WRF.
Status: Proposed.
Verification: Unit test.
Notes: CAM-FV: the size of the global domain begin and end indices are known a priori and does not need to
be retrieved.

DG2.5 Layout retrieval

ESMF methods will be provided to publish and retrieve the layout associated with a distributed grid.

Priority:
Source: CCSM-CPL, MIT.
Status: Proposed.
Verification: Unit test.

DG2.6 Grid topology retrieval

ESMF methods will be provided to retrieve the network of connectivities established by the data dependency patterns
of the distributed grid.

Priority:
Source: CCSM-CPL, MIT
Status: Proposed.
Verification: Unit test.
Notes:

DG2.7 Which PE is a point on?

ESMF methods will be provided to query the PE associated with (i.e “owning” the exclusive domain containing) any
point in a distributed grid.

113

Priority:
Source: CCSM-CPL, POP, MIT, WRF
Status: Proposed.
Verification:
Notes: WS: which PE is it on and (optionally?) what is its local index. Also: if one is given the PE and the local
index, it should be possible to get the global index. Is it a requirement that these mappings be highly efficient (a
challenging programming task)?

DG2.8 Cross-component queries

It shall be possible to retrieve the distributed grid associated with any component in an application in a form that
permits all the query operations listed above.

Priority:
Source: CCSM-CPL, MIT.
Status: Proposed.
Verification: Unit test.
Notes: Application here means "ESMF application"? - CNH

DG3 Grid relations

DG3.1 Equality of global domains

It shall be possible to state if two distributed grids share the same global domain.

Priority: 1.
Source: CAM-FV, NSIPP, CAM-EUL, CLM, CCSM-CPL, POP, CICE, MIT
Status: Proposed.
Verification: Unit test.

DG3.2 Equality of domain decomposition

It shall be possible to state if two distributed grids sharing a global domain are identically decomposed.

Priority:
Source: CCSM-CPL, MIT
Status: Proposed.
Verification: Unit test.

DG3.3 Equality of PE assignment

It shall be possible to state if two distributed grids with identical domain decompositions assign their exclusive domains
to the identical sequence of PEs.

Priority:
Source: CCSM-CPL, POP, CICE, MIT.
Status: Proposed.
Verification: Unit test.

114

DG4 Halo update

DG4.1 Unblocked halo update

ESMF shall provide an unblocked halo update: where the underlying data transfer may not be complete when the call
returns.

Priority: 1.
Source: CAM-FV, NSIPP, NCEP-SSI, MIT, WRF
Status: Proposed.
Verification:
Notes: Maybe we’re pre-empting design issues, but I’d want issues like wait-for-completion dealt with within
distributed grids.
WRF: This is only useful if we also have a way of computing separately the interior (those points that do not
have data dependencies on the halo) and boundary (those around the edge that do) of an exclusive domain.

DG4.2 Blocked halo update

ESMF shall provide a blocked halo update: where the underlying data transfer is complete when the call returns.

Priority:
Source: CAM-EUL, CLM, CCSM-CPL, POP, CICE, MIT, WRF
Status: Proposed.
Verification: Unit test.
Notes: Doesn’t necessarily need separate call, same as unblocked + wait-for-completion.
WRF: This should be default, and unblocked should be separate call.

DG4.3 Wait for completion

ESMF shall provide a method to wait for the completion of a previously issued unblocked halo update.

Priority: 1.
Source: CAM-FV, NCEP-SSI, MIT, WRF.
Status: Proposed.
Verification: Unit test.

DG4.4 Validation and invalidation of halo points

ESMF shall provide methods to declare halo points valid or invalid (i.e requiring a halo update prior to use).

Priority:
Source: POP (desired), CICE (desired), MIT.
Status: Proposed.
Verification:
Notes: This feature can be used to detect when to perform a halo update. This may also be used to reduce
the frequency of halo updates on high-latency networks, by declaring wide halos and performing redundant
computations within them. See [3] for details. Partial updates may not necessarily support arbitrary lists of halo
points, but the following are useful:

� “Update N and E halos only, including the NE corner.”
� “Update only 1 row/column in each direction even if the halo width is 2”.
� ‘Update only the outer row/column of a 2-width halo.”

115

DG4.5 Arrays of derived type

All relevant operations in this Section DG4 must apply to data arrays where each array element is a derived data type.

Priority:
Source:
Status: Proposed.
Verification:
Notes: I hope this isn’t required, but see Section DG20 below. Why did we reject this - seems like it should be
deferred - CNH.

DG4.6 Adjoint of halo

A "transpose" form (in the mathematical sense of the word) is required for all the permutations that a halo can perform.

Priority: 1.
Source: MIT.
Status: Proposed.
Verification: Unit test.

DG5 Data transpose

DG5.1 Unblocked data transpose

ESMF shall provide an unblocked data transpose: where the underlying data transfer may not be complete when the
call returns.

Priority: 1
Source: CAM-FV (2D decomposition), NSIPP, NCEP-GSM, NCEP-SSI, MIT, WRF
Status: Proposed.
Verification:
Notes: Maybe we’re pre-empting design issues, but I’d want issues like wait-for-completion dealt with within
distributed grids.

DG5.2 Blocked data transpose

ESMF shall provide a blocked data transpose: where the underlying data transfer is complete when the call returns.

Priority: 1.
Source: Required by CAM-EUL, CLM, CCSM-CPL, POP, CICE, NCEP-GSM, NCEP-SSI, MIT, WRF.
Status: Proposed.
Verification:
Notes: Doesn’t necessarily need separate call, same as unblocked + wait-for-completion.

DG5.3 Wait for completion

ESMF shall provide a method to wait for the completion of a previously issued unblocked data transpose.

Priority: 1.
Source: CAM-FV (2D decomposition), NSIPP, NCEP-GSM, NCEP-SSI, MIT, WRF
Status: Proposed.
Verification: Unit test.

116

DG5.4 Arrays of derived type

All relevant operations in this Section DG5 must apply to data arrays where each array element is a derived data type.

Priority:
Source:
Status: Rejected – arrays only should suffice.
Verification: Unit test.
Notes: I hope this isn’t required, but see Section DG20 below.

DG5.5 Adjoint of transpose

A "transpose" form (in the mathematical sense of the word) is required for all the permutations that a transpose (in the
ESMF sense) can perform.

Priority: 1.
Source: MIT
Status: Proposed.
Verification: Unit test.
Notes:

DG6 Gather

It shall be possible to create a copy on any PE of the entire global array from a distributed array.

Priority: 1
Source: All, MIT
Status: Proposed.
Verification: Unit test.
Notes:

DG6.1 Allgather

It shall be possible to create a copy on all PEs of the associated PElist of the entire global array from a distributed
array.

Priority: 1
Source: CAM-FV, NSIPP, CAM-EUL, CLM, CCSM-CPL, NCEP-GSM, NCEP-SSI, MIT
Status: Proposed.
Verification: Unit test.
Notes:

DG6.2 Partial gather

In a 2D decomposition, it shall be possible to perform a gather along either axis.

Priority: 1
Source: CAM-FV (2D decomposition), POP, MIT
Status: Proposed.
Verification: Unit test.
Notes:

117

DG6.3 Adjoint of gather

A "transpose" form (in the mathematical sense of the word) is required for the matrix operator a gather represents.

Priority: 1
Source: MIT
Status: Proposed.
Verification: Unit test.
Notes:

DG7 Scatter

It shall be possible to create a distributed array across a PE list from a copy on any PE of the entire global array.

Priority:
Source: All, MIT.
Status: Proposed.
Verification: Unit test.
Notes:

DG7.1 Partial scatter

In a 2D decomposition, it shall be possible to perform a scatter along either axis.

Priority:
Source: CAM-FV (2D decomposition), NSIPP, MIT.
Status: Proposed.
Verification: Unit test.
Notes:

DG7.2 Adjoint of scatter

A "transpose" form (in the mathematical sense of the word) is required for the matrix operator a scatter represents.

Priority:
Source: MIT.
Status: Proposed.
Verification: Unit test.
Notes:

DG8 Broadcast

It shall be possible to broadcast data to all PEs in the domain decomposition.

Priority:
Source: NCEP-SSI, MIT.
Status: Proposed.
Verification: Unit test.
Notes:

118

DG8.1 Adjoint of broadcast

A "transpose" form (in the mathematical sense of the word) is required for the matrix operator a broadcast represents.

Priority:
Source: MIT.
Status: Proposed.
Verification: Unit test.
Notes:

DG9 Bundling

ESMF shall provide a method to bundle multiple data arrays on the same distribution for aggregate data transfer.

Priority: 1.
Source: CAM-FV, CAM-EUL, CLM, CCSM-CPL, POP, CICE, NCEP-GSM, NCEP-SSI, MIT, WRF
Status: Proposed.
Verification: Unit test.
Notes: Note that all arrays in a bundle must share the same distribution, that’s the only case where aggregate
data transfer methods may be simple and efficient.

Bundling methods with similar requirements may appear in other documents (e.g Fields, Regrid, Physical
Grids), but the methods there will likely cascade to here, as the main utility of bundles lies in aggregate data
transfer methods on distributed grids. The other documents should derive an equivalent list of methods listing
the ones here as source.

WRF: Should the bundling have to be specified by the application? Allow this as a hint that app can provide
ESMF.

We need to work to clarify the concept of a bundle throughout this doc - right now it’s pretty confusing - CMD.

DG9.1 Initiate a bundle

It must be possible to initiate any number of instances of a bundle on a distributed grid.

Priority:
Source: CAM-FV, CAM-EUL, CLM, CCSM-CPL, POP, CICE, NCEP-GSM, NCEP-SSI, MIT
Status: Proposed.
Verification: Unit test.

DG9.2 Add an array

It must be possible to add any array on a conformant distributed grid to a bundle.

Priority:
Source: CAM-FV, POP, MIT.
Status: Proposed.
Verification: Unit test.
Notes: Mix-and-match data types allowed? Could be tricky... if array elements have differing byte lengths.

119

DG9.3 Delete an array

It must be possible to delete any array from a bundle.

Priority:
Source: CCSM-CPL, MIT.
Status: Proposed.
Verification: Unit test.

DG9.4 Merge bundles

It must be possible to merge bundles sharing a distributed grid.

Priority:
Source: CCSM-CPL, MIT.
Status: Proposed.
Verification: Unit test.
Notes: Two bundles on different distributed grids may end up on the same one after a data transpose.

DG10 Global reduction operations

DG10.1 Integer global sum

ESMF shall provide methods to compute the global sum of a distributed integer array.

Priority: 1
Source: CAM-FV, NSIPP, CAM-EUL, CLM, CCSM-CPL, POP, CICE, MIT
Status: Proposed.
Verification: Unit test.

DG10.2 FP and complex global sum

ESMF shall provide methods to compute the global sum of a distributed floating-point or complex array.

Priority: 1
Source: CAM-FV, NSIPP, CAM-EUL, CLM, CCSM-CPL, POP, CICE, NCEP-GSM, NCEP-SSI, MIT
Status: Proposed.
Verification: Unit test.

DG10.2.1 FP and complex global sum under a mask

ESMF shall provide methods to compute the global sum of a 2D-decomposed floating-point or complex array under
control of a mask. The mask omits an arbitrary list of array locations from the sum.

Priority:
Source: POP, CICE, MIT
Status: Proposed.
Verification: Unit test.
Notes: Not the same mask as in Req. DG1.8.

120

DG10.2.2 FP and complex global sum along one axis

ESMF shall provide methods to compute the global sum of a 2D-decomposed floating-point or complex array along
either axis of decomposition.

Priority: 1.
Source: CAM-FV (2D decomposition), NSIPP, CAM-EUL, CLM, CCSM-CPL, POP, MIT
Status: Proposed.
Verification: Unit test.
Notes: Required for computing zonal means.

DG10.2.3 FP and complex bit-reproducible global sum

ESMF shall provide methods to compute the global sum of a 2D-decomposed floating-point or complex array where
the result is bitwise identical on different decompositions.

Priority: 1.
Source: Trace to GR. CAM-EUL, CLM, NCEP-GSM, NCEP-SSI, MIT
Status: Proposed.
Verification: Unit test.
Notes: Possibly a compile-time option of normal (optimized) global sum. I think it should runtime selectable -
CNH.

DG10.3 FP and complex global checksum

ESMF shall provide methods to compute the global checksum of a distributed floating-point or complex array.

Priority:
Source: MIT (desired)
Status: Proposed.
Verification: Unit test.
Notes: A checksum is different from a sum in that there is no data loss when the data has a dynamic range
exceeding the FP or complex precision. It is done by casting all FP numbers as integers before summing.

DG10.4 Adjoints of all sums except checksum are required

DG10.5 Global maximum of integer or FP data

ESMF shall provide methods to compute the global maximum of a distributed integer or FP array.

Priority: 1.
Source: CAM-FV, NSIPP, CAM-EUL, CLM, CCSM-CPL, POP, CICE, NCEP-GSM, NCEP-SSI, MIT
Status: Proposed.
Verification: Unit test.
Notes:

DG10.5.1 Location of global maximum

The location of this maximum on the distributed grid is also retrievable.

Priority: 1.
Source: CAM-FV, NSIPP, CAM-EUL, CLM, CCSM-CPL, POP, CICE, NCEP-GSM, NCEP-SSI, MIT
Status: Proposed.
Verification: Unit test.
Notes:

121

DG10.6 Global minimum of integer or FP data

ESMF shall provide methods to compute the global minimum of a distributed integer or FP array.

Priority: 1.
Source: CAM-FV, NSIPP, CAM-EUL, CLM, CCSM-CPL, POP, CICE, NCEP-GSM, NCEP-SSI, MIT
Status: Proposed.
Verification: Unit test.
Notes:

DG10.6.1 Location of global minimum

The location of this minimum on the distributed grid is also retrievable.

Priority: 1.
Source: CAM-FV, NSIPP, CAM-EUL, CLM, CCSM-CPL, POP, CICE, NCEP-GSM, NCEP-SSI, MIT
Status: Proposed.
Verification: Unit test.

DG11 Blocked and unblocked collectives

It shall be possible to perform gather, scatter, broadcast, and reduction in both blocked and unblocked forms.

Priority:
Source: NCEP-SSI, MIT.
Status: Proposed.
Verification: Unit test.

DG12 Grid staggering

There are many possible ways to specify staggered grids. Currently grid staggering is only required for logically
rectilinear grids. We use the notation of [2] to specify staggering (e.g. A-, B-, C- and D-grids) together with a
directional qualifier, e.g NE to specify a forward index offset in X and Y.

DG12.1 AGRID

ESMF will support a AGRID stencil: where the vector component array locations ����� and ����� are located at the cell
center � �	��
 ! .

Priority: 1.
Source: CAM-FV, CAM-EUL, CLM, CCSM-CPL, MIT, WRF (SISL, 3DVAR)
Status: Proposed.
Verification: Unit test.
Notes:

DG12.2 BGRID

ESMF will support a BGRID stencil: where the vector component array locations � ��� and � ��� are located at the NE
cell corner � �
 �� ��

 �� ! . Both NE and SW flavors are supported.

Priority: 1.
Source: Required by POP, CICE, MIT.
Status: Proposed.
Verification: Unit test.

122

DG12.3 CGRID

ESMF will support a CGRID stencil: where the vector component array locations � ��� and � ��� are located on the N
and E faces � �
 �� ��
 ! and � � �

 �� ! respectively. Both NE and SW flavors are supported.

Priority: 1.
Source: Required by CAM-FV, POP, MIT, WRF.
Status: Proposed.
Verification: Unit test.

DG12.4 DGRID

ESMF will support a DGRID stencil: where the vector component array locations � ��� and � ��� are located on the E
and N faces � �	��

 �� ! and � �
 �� �
 ! respectively. Both NE and SW flavors are supported.

Priority: 1.
Source: Required by CAM-FV, MIT.
Status: Proposed.
Verification: Unit test.

DG12.5 EGRID

ESMF will support a DGRID stencil: where the vector component array locations � ��� and � ��� are (include specification
of E-grid here).

Priority:
Source: WRF (MesoNH).
Status: Proposed.
Verification: Unit test.

Part VII

Requirements for Specific Grid Types
The distributed grid module will provide support the following physical grids:

DG13 Tripolar grid

The tripolar grid [7] is used to address the pole problem in ocean models, by creating a grid with two poles in the
Northern Hemisphere, both over land. This creates a grid topology with a fold. Vector components experience sign
reversal on crossing a fold; also some points on the vector stencil may be redundant.

(figure)

Priority: 1.
Source: POP, CICE.
Status: Proposed.
Verification: Unit test.
Notes:

123

DG13.1 Vector component reversal

Priority: 1.
Source: POP, CICE.
Status: Proposed.
Verification: Unit test.
Notes:

DG13.2 Redundancy enforcement

Certain locations on a staggered grid have multiple index locations for a single physical location. While these points
are redundant, the data there may diverge because of FP roundoff error. ESMF will provide methods to enforce exact
redundancy.

Priority: 1.
Source: POP, CICE
Status: Proposed.
Verification: Unit test.
Notes:

DG13.3 Validity of grid

It must be possible to check if the grid and fold are conformant: for instance, a southern fold with a BGRID stencil
needs an extra vector row at the southern edge.

Priority: 1.
Source: POP, CICE.
Status: Proposed.
Verification: Unit test.
Notes:

DG14 Cubed-sphere grid

The cubed-sphere grid [8] is used to address the pole problem in ocean models, by creating a grid with eight weak
poles, which may also be moved over land if one chooses. This creates a grid topology where vector components
may need to be interchanged (� � � � ! � � � � � � � !) on crossing a cube edge. Some points on the vecor stencil may be
redundant.

DG14.1 Vector component interchange

ESMF will correctly treat vector components crossing faces of a cubed sphere to perform the appropriate component
interchanges.

Priority: 1.
Source: MIT
Status: Proposed.
Verification: Unit test.
Notes:

124

DG14.2 Redundancy enforcement

Certain locations on a staggered grid have multiple index locations for a single physical location. While these points
are redundant, the data there may diverge because of FP roundoff error. ESMF will provide methods to enforce exact
redundancy.

Priority: 1.
Source: MIT
Status: Proposed.
Verification: Unit test.
Notes:

DG15 Spectral grid

Spectral models generally have three associated grids, one in physical space, one in Fourier space, and one in spectral
(wavenumber) space. The sequence of transformations to pass data between the grids is treated at its highest level
within the Regrid semantics. Within these, there is generally a specific step to redistribute data to optimize specific
operations (FFTS and LTs). This section will highlight the specific requirements of these redistributions.

DG15.1 Globalize on one axis

There will be an efficient method to create an array where all the global data is available along one of the axes of
distribution.

Priority:
Source:
Status: Proposed.
Verification: Unit test.
Notes: Already covered by Req. DG6.2, but highlighted here.

DG15.2 Transpose axis of globalization

There will be an efficient method to transpose an array global along one axis, into one global along another. Note that
this is a matrix transpose, as opposed to the general redistribution that we’ve called a data transpose in DG5.

Priority:
Source:
Status: Proposed.
Verification: Unit test.
Notes: Already covered by Req. DG6.2, but highlighted here.
(MI) The NCEP codes will be able to satisfy this need with data transposes.

DG16 Exchange grid

DG17 Icosahedral grid

See [4, 6] for extensive discussions on these grids.

Priority: 3.
Source: FV, POP, CICE
Status: Deferred

125

Verification: Unit test.
Notes: Envisioned for FV, but not a milestone. POP, CICE currently funded to do this under CSU SciDAC effort
but ESMF involvement will occur in future.

DG18 Reduced grids

Priority:
Source: NCEP-GSM
Status: Proposed.
Verification: Unit test.
Notes:

DG19 Nested grids

Nested grids are overlapping grids with certain properties that may be possible to exploit for efficiency. Many of
the requirements having to do with data exchange between nested grids will appear in the physical grid and Regrid
documents. Some requirements of nested grids appear here: these concern the special case of mesh-aligned nested
grids. Nesting is defined to be mesh-aligned when every coarse grid point in the region of coverage of a fine nest is
also a point on the fine grid. The following requirements apply to mesh-aligned nested grids:

DG19.1 Discrete data shift on moving nests

A method will be provided for data shifting by integral grid intervals along axes of decomposition on a distributed
moving mesh-aligned nested grid.

Priority:
Source: WRF
Status: Proposed.
Verification: Unit test.
Notes: i.e, a moving mesh-aligned nested grid may support a lateral data shift: “move all points on this dis-
tributed grid 2 points south and 1 east”.

DG20 Unstructured grids and ungridded data

.
Unstructured grids and ungridded location streams will come associated with an underlying background grid

(see ??). Requirements in this section use the background grid to define operations on unstructured grids and un-
gridded location streams. For the purpose of a distributed grid, unstructured grids and ungridded location streams are
aligned on a single axis, each index of which is associated with a background grid cell.

DG20.1 Grid association

It shall be possible to associate a structured grid with unstructured grids and ungridded location streams.

Priority: 1.
Source: PSAS, NSIPP, NCEP-SSI (milestone), MIT(assimilation and lagrangian diagnostics)
Status: Proposed.
Verification: Unit test.
Notes: The method to generate the background grid requires location information, and belongs to the physical
grid. Needed for PSAS, but not a milestone.

126

DG20.2 Domain decomposition

It shall be possible to apply domain decomposition to unstructured grids and ungridded location streams, using the
background grid.

Priority: 1.
Source: PSAS, NSIPP, NCEP-SSI (milestone), MIT(assimilation and lagrangian diagnostics)
Status: Proposed.
Verification: Unit test.
Notes: Needed for PSAS, but not a milestone.

DG20.3 Halos and halo updates

It shall be possible to apply halos and halo update operations as defined in DG4 to unstructured grids and ungridded
location streams, using the background grid.

Priority: 1.
Source: PSAS, NSIPP, NCEP-SSI (milestone), MIT(assimilation and lagrangian diagnostics)
Status: Proposed.
Verification: Unit test.
Notes: Needed for PSAS, but not a milestone.

DG20.4 Data transpose

It shall be possible to apply data transposes as defined in DG5 to unstructured grids and ungridded location streams,
using the background grid.

Priority: 1.
Source: PSAS, NCEP-SSI (milestone)
Status: Proposed.
Verification: Unit test.
Notes: Needed for PSAS, but not a milestone.

127

Part VIII

Infrastructure Fields and Grids: Regridding

1 Authors, target codes and review team

Authors: Phil Jones, Mark Iredell, Will Sawyer

Review Date: 30 April, 2002

Target Codes Reviewers
GFDL-SPEC, BGRID, MOM4 Balaji
HIM Hallberg
CAM-EUL, CLM, CCSM-CPL Craig
CAM-FV, PSAS da Silva
POP, CICE Jones
WRF Michalakes
MIT-REG, MIT-CPL, ADJ Hill
NSIPP-ATM, NSIPP-OCN Suarez
NCEP-ATM, SSI Iredell, Young

Other Reviewers: DeLuca, Neckels, Jacob, Larson

2 Regrid background

Many applications in Earth system modeling require transforming fields between different grids. Such cases occur
when coupling two components that utilize different grids (eg coupling atmosphere and ocean components of a climate
model) or when a single component utilizes more than one grid (eg nested grids, multi-grid or spectral transforms).
Fields must then be interpolated, averaged or remapped from one grid to another. We will refer to this process as
regridding.

Many different methods for performing regriddings are required. Regridding heat or water fluxes between models
requires fluxes to be regridded in a way that conserves the total energy or water in the model. In other cases, it is more
important that higher-order regridding methods be used to prevent discontinuities in the interpolated fields or their
gradients.

In addition to moving fields between grids, components require moving ungridded data (eg observations) to and
from component grids. Transforming fields from physical space to spectral space is also a frequent operation.

The ESMF Regridding facility (Regrid) will supply necessary functions and data structures for implementing re-
gridding operations. Appropriate functions will be supplied for all supported ESMF grids, including grids in spherical,
Cartesian and cylindrical coordinates and non-gridded lists of points in those coordinates (see physical grid require-
ments for complete list of supported grids). A variety of methods will be supplied, including conservative, spectral
transform, linear and higher-order methods. The remainder of this document outlines specific requirements for all of
the supported options.

2.1 Location

Regridding and interpolation is part of the ESMF Infrastructure. It will use information from physical grids or dis-
tributed grids to compute regridding information and use distributed grids for performing data motion related to re-
gridding. It will (presumably) be used by couplers and fields as well as within component models when necessary.

128

2.2 Scope

ESMF Regrid is meant to be used for interpolating or remapping data between supported ESMF grids. Support for
moving fields between points on staggered grids will be included in the physical grid.

129

RG1 Regrid requirements

RG2 General regridding requirements

The following are general requirements for regridding operations and are in addition to the applicable general ESMF
requirements (see ESMF General Requirements document).

RG2.1 Creation

Components must be able to create a regridding and initialize various time-independent regridding quantities.

Priority: 1.
Source: All codes will require this.
Status: Proposed.
Verification: Unit test.
Notes: This function will, in many cases, be computing regridding weights and initializing various communi-
cation information for performing regridding.

RG2.2 Destruction

Components must be able to destroy regriddings to free up memory.

Priority: 1.
Source: POP, CICE, CAM desired, NSIPP, CCSM-CPL, NCEP-SSI, MIT.
Status: Proposed.
Verification: Unit test.
Notes:

RG2.3 Query

Components must be able to query various properties of a regridding.

Priority: 2.
Source: CCSM-CPL, NCEP-SSI, MIT.
Status: Proposed.
Verification: Unit test.
Notes: Ideally, components should not need to access internal regridding fields. But it might be useful to access
some aspects for error checking, optimization of data layout or renormalization. Exact query functions will be
determined after design of structure is determined.

RG2.4 Change

Components should be able to change individual properties of a regridding. Examples might include adjusting regrid-
ding weights to renormalize or to adapt to dynamic area fractions (like ice fraction).

Priority: 3.
Source: CCSM-CPL, NCEP-SSI, MIT.
Status: Proposed.
Verification: Unit test.
Notes: In general, this should be strongly discouraged as it may affect regridding properties like conservation.
The need for such a function will be determined by applications.

130

RG2.5 Reading

Components may be able to read regridding information from a file.

Priority: 1.
Source: POP, CICE, CAM desired, NSIPP, CCSM-CPL, NCEP-SSI, MIT.
Status: Proposed.
Verification: Unit test.
Notes: Useful if creating regriddings is time-consuming to avoid start-up costs. Also permits off-line computa-
tion of regridding.

RG2.6 Writing

Components may be able to write regridding information to a file.

Priority: 1.
Source: POP, CICE, CAM desired, NSIPP, CCSM-CPL, NCEP-SSI, MIT.
Status: Proposed.
Verification: Unit test.
Notes: Useful if creating regriddings is time-consuming - compute once and save for later re-use. Also useful
for any off-line use of same regridding info.

RG2.7 Support for ESMF grids

Regridding operations must be available for all supported ESMF grids, including ungridded data. Not all regridding
operations are appropriate for all grid types; restrictions will be noted in individual requirements.

Priority: 1.
Source: All codes require this.
Status: Proposed.
Verification: System test
Notes:

RG2.8 Multiple fields

Regridding of multiple fields (bundles of fields) with a single call must be supported.

Priority: 1
Source: CCSM-CPL, NCEP-GSM, NCEP-SSI, MIT.
Status: Proposed.
Verification: Unit test.
Notes: This should be supplied for efficiency, but may not be required to achieve functionality.

RG2.8.1 Interface requires only data arrays

An interface requiring only data arrays shall be provided. Such an interface would not require the overhead of a full
field structure and is supplied for efficiency.

Priority: 2.
Source: POP, CICE, CAM desired, CCSM-CPL, NCEP-GSM, NCEP-SSI, MIT, WRF.
Status: Proposed.
Verification: Unit test.
Notes: Field info may still be used for creation of the regrid object.

131

RG2.8.2 Consistency of field bundles

The regridding function must check if the input field bundle and output field bundle are consistent with each other,
particulary in number of fields, name of fields and grids on which the fields are placed.

Priority: 2.
Source: POP, CICE, CAM desired, NSIPP, CCSM-CPL, NCEP-SSI, NCEP-GSM, MIT.
Status: Proposed.
Verification: Unit test.
Notes: A rudimentary error check, but would probably rely on consistent naming convention for fields?

RG2.9 Multiple methods per grid pair

It shall be possible to create more than one regridding for a given grid pair.

Priority: 1.
Source: POP, CICE, CAM required, CCSM-CPL, MIT.
Status: Proposed.
Verification: Unit test.
Notes: Both non-conservative and conservative methods will be needed between the same two grids.

RG2.10 Consistency of coordinates

Regridding will assume source and destination grids will be in compatible coordinate systems. No knowledge of the
projection used or the physics of the coordinate are required for performing a regridding. For example, if a horizontal
grid is in Caresian coordinates, the second grid must also be in Cartesian coordinates with the same origin. Similarly,
if the coordinates of one grid are in spherical coordinates, the second grid must also use spherical coordinates. The
restriction also applies to vertical coordinates where the regridding will not be expected to know how to transform
between two different coordinate choices (eg pressure to isentropic).

Priority: 1.
Source: Required by all.
Status: Proposed.
Verification: Code inspection
Notes: Exceptions to this are permitted if the user supplies the regridding routine (see later requirement on
user-supplied regridding).

RG2.10.1 Consistency of coordinates check

The regridding function must check that the grids are in fact consistent with each other.

Priority: 2.
Source: Required by all.
Status: Proposed.
Verification: Code inspection
Notes: Will require some standard nomenclature for grid attributes, particularly for vertical grids.

RG2.11 Interpolation adjoints

Adjoints shall be supplied for regridding methods when possible. This is generally possible for regriddings that are
independent of the field being regridded (see following requirement) and that can be cast as a linear operator (eg
matrix multiplication). Methods where adjoints are absolutely required have been so noted within their own respective
decriptions.

132

Priority: 2.
Source: PSAS, NSIPP, NCEP-SSI, MIT (milestone).
Status: Proposed.
Verification: Unit test.
Notes: Needed by PSAS, but not milestone

RG2.12 Masked regridding

It shall be possible to restrict the regridding to parts of a grid through the use of a mask. Note that use of a mask is
inappropriate for some methods (eg spectral transforms) and will not be supported for those methods.

Priority: 1.
Source: CCSM-CPL (desired)
WRF required, NSIPP, NCEP-GSM, MIT.
Status: Proposed.
Verification: Unit test.
Notes:

RG2.12.1 Mask consistency

If masks are supplied for both source and destination grids, a method for checking consistency of those masks must
be supplied. Alternatively, a convention for resolving mask conflicts must be determined (eg source grid is “master”).

Priority: 1.
Source:
WRF required, NSIPP, NCEP-GSM, MIT.
Status: Proposed.
Verification: Unit test.
Notes:

RG2.13 Independence of field

Whenever possible, regridding should be formulated to be independent of the field being regridded. This require-
ment exists to aid the creation of an adjoint, to enable pre-computation of regridding weights and to enable re-use of
regridding information for multiple fields.

Priority: 1.
Source: Required by all.
Status: Proposed.
Verification: Code inspection
Notes:

RG2.14 Dependence of field

For regridding schemes which might require field information, the required field information can be passed as argu-
ments. Some higher-order regridding schemes require information on the gradient or other moments of a field. In such
cases, this supplemental field information must be computed by the component and passed to the regridding function
so that the regridding does not require detailed knowledge of operators or grid topology on every supported grid or
field.

Priority: 1.
Source: Required by all.

133

Status: Proposed.
Verification: Code inspection
Notes: This requirement could also be satisfied by a later requirement for user-supplied regridding routines.

RG3 Regridding algorithms

This section contains requirements on regridding algorithms themselves.

RG3.1 Conservation

Regridding methods must be supplied which are conservative. Where possible, higher-order conservative methods
should also be supplied. This requirement applies only to ESMF grids which have an area (2-d), volume (3-d) or
linear region (1-d) associated with them such that conservation is well defined.

Priority: 1.
Source: POP,CICE,CAM required, NSIPP, CCSM-CPL, MIT.
Status: Proposed.
Verification: Unit test.
Notes: Methods exist for both first and second-order conservative schemes in 1-d and 2-d [5]. Conservative
methods for 3-d field (eg Monte Carlo or 3-d extensions to the above methods) are more difficult and may have
a lower priority. High-order conservative schemes are more expensive and no schemes higher than second-order
have been implemented.

MI - Some grids may have a higher-order integration method associated with them (overlappping functions as
weights), potentially making conservative regridding difficult and expensive.

RG3.1.1 Verification of conservation

A method for verifying conservation must be supplied.

Priority: 2.
Source: CCSM-CPL.
Status: Proposed.
Verification: Unit test.
Notes: For error checking and testing.

RG3.2 Monotonicity

Monotone regridding methods must be supplied.

Priority: 2.
Source: CAM-FV, CAM-EUL, MIT.
Status: Proposed.
Verification: Unit test.
Notes: CAM-FV vertical remapping requires this. Biogeochemical models may need this. First-order conser-
vative schemes are generally monotone by construction, so this could be satisfied by the conservation require-
ment for gridded data. 1-d monotone schemes are required for some hybrid and Lagrangian vertical coordinate
schemes.

134

RG3.3 Higher-order schemes

Regridding methods which are higher than first order must be supplied. This is required for preventing “patchwork”
patterns when regridding from coarse to fine grids and for preventing discontinuities in gradients of regridded fields.

Priority: 1.
Source: POP, CICE, CAM required, CCSM-CPL, NCEP-GSM, NCEP-SSI, MIT.
Status: Proposed.
Verification: Unit test.
Notes: This will require either internal approximations to gradients (eg bilinear, bicubic, trilinear) or will re-
quire the user to pass gradient information (eg second-order conservative methods). See requirements on field
dependence. Also, this requirement can be in conflict with monotonicity requirements. Options to specify what
happens to higher-order at boundaries are needed.

RG3.4 Vector fields in physical space

Regridding methods must be available for regridding a horizontal vector field with components aligned with physical
directions (eg zonal-meridional or x-y), where the physical direction may be inferred by the grid type or specified by
user.

Priority: 1.
Source: POP, CICE, CAM required, NSIPP, CCSM-CPL, NCEP-SSI, MIT.
Status: Proposed.
Verification: Unit test.
Notes: In spherical coordinates, meridional velocity components may be improperly handled except in simple
latitude-longitude grid combinations.

RG3.5 Vector fields in logical space

Regridding methods must be available for regridding a horizontal vector field with components aligned along grid
logical directions. Logical directions here refer to directions parallel and perpendicular to cell sides. Such a method
would correctly handle flow through coordinate singularities such as the poles in spherical coordinates.

Priority: 2.
Source: POP, CICE (CCSM) desired, NSIPP, CCSM-CPL (desired), MIT.
Status: Proposed.
Verification: Unit test.
Notes: Currently working on whether it is even possible to do this in all cases, but willing to make the attempt.
Conversion to 3-d Cartesian components during the remapping is one option.

RG3.6 Regridding based on index space

Methods must be available for regridding based only on logical indices of grid points and thus only on distributed grid
information. Such a function is useful for nested grid and multi-grid applications where no physical grid information
is required for creating the regridding.

Priority: 1.
Source: WRF required, NSIPP, MIT.
Status: Proposed.
Verification: Unit test.
Notes: Will need a general way to specify stencils

135

RG3.6.1 Index space changes

A method must be supplied for rapidly changing the regridding in cases where indices of one grid shift in relation
to the other grid (eg as a nested grid moves in relation to its parent). The regridding in this case would be utilizing
the same stencil and weights; only the addresses of the grid points would shift. Because of the simple nature of this
operation, this requirement provides an efficient short-cut, avoiding re-creating a regridding using calls to create or
destroy methods.

Priority: 1.
Source: WRF required.
Status: Proposed.
Verification: Unit test.
Notes: A requirement for this exists for the distributed grid, so Regrid would utilize the distributed grid func-
tionality to accomplish this.

RG3.7 Fourier transforms

Methods shall be supplied for regridding between physical space and Fourier space. The adjoints shall also be supplied.
Ordering in Fourier space will be defined by the distributed grid. This requirement applies only to grids consistent
with the Fourier transform (eg lat/lon grids, reduced grids, spectral elements, etc.).

Priority: 1.
Source: NCEP-GSM, NCEP-SSI (milestone), NSIPP.
Status: Proposed.
Verification: Unit test.
Notes:

RG3.7.1 Return types for Fourier modes

Results of Fourier transforms can be returned as either complex numbers or as real numbers in a specified order.

Priority: 1.
Source: NCEP-GSM, NCEP-SSI.
Status: Proposed.
Verification: Unit test.
Notes:

RG3.7.2 Parallel implementations

Distributed FFT algorithms will be supported for a limited number of specific configurations. Note that a transpose
algorithm (in which a local serial transform is combined with data transposes to redistribute data) will always be
supported for the general case.

Priority: 1.
Source:
Status: Proposed.
Verification: Unit test.
Notes: Distributed algorithms make assumptions about the placement of both input and output data and support
for all possibilities may be prohibitive.

136

RG3.8 Legendre transforms

Methods shall be supplied for regridding between spectral space and Fourier space. The adjoints shall also be supplied.
This requirement applies only to grids consistent with the Legendre transform (the data must be located at appropriate
quadrature points). Both scalar and vector fields must be supported.

Priority: 1.
Source: NCEP-GSM, NCEP-SSI (milestone), NSIPP.
Status: Proposed.
Verification: Unit test.
Notes:

RG3.8.1 Data types for Fourier modes

Legendre transforms must support Fourier modes stored as either complex numbers or as real numbers in a specified
order.

Priority: 1.
Source: NCEP-GSM, NCEP-SSI.
Status: Proposed.
Verification: Unit test.
Notes: Companion to the Fourier requirement above.

RG3.8.2 Parallel implementations

Distributed Legendre algorithms will be supported for a limited number of specific configurations. Note that a trans-
pose algorithm (in which a local serial transform is combined with data transposes to redistribute data) will always be
supported for the general case.

Priority: 1.
Source:
Status: Proposed.
Verification: Unit test.
Notes: Similar to the Fourier requirement, distributed algorithms make assumptions about the placement of
both input and output data and support for all possibilities may be prohibitive.

RG3.9 Other functional transforms

Methods shall be supplied for regridding using user-supplied matrices, particularly between functional space and
physical space. The adjoints shall also be supplied. The grids again must be consistent with the functional transform
being applied.

Priority: 1.
Source: NCEP-SSI (milestone), NSIPP, MIT.
Status: Proposed.
Verification: Unit test.
Notes: MI - The NCEP-SSI transforms between vertical EOF space and vertical model levels.

RG3.10 Interpolating from gridded data to ungridded data

All methods shall work for regridding FROM gridded data TO ungridded data, except that no conservation properties
are required. Adjoints shall be supplied for interpolation TO ungridded data.

137

Priority: 1.
Source: NCEP-SSI (milestone), PSAS (not milestone), NSIPP, MIT.
Status: Proposed.
Verification: Unit test.
Notes:

RG3.11 Interpolating from ungridded data to gridded data

Methods for regridding FROM ungridded data TO gridded data may be supplied (eg nearest-neighbor distance-
weighted schemes).

Priority: 3.
Source: MIT.
Status: Proposed.
Verification: Unit test.
Notes: Generally, operations like this will be covered by data assimilation schemes, but simple methods may be
useful for other model-data comparisons.

RG3.12 User-supplied regridding methods

It shall be possible for users to supply their own regridding routines. This is especially useful for regriddings that are
strongly dependent on model fields.

Priority: 2.
Source: CAM-FV, NSIPP, CCSM-CPL, MIT.
Status: Proposed.
Verification: Unit test.
Notes: The implementation report will examine use of function pointers or their equivalent, but implementation
may run into other interface issues.

RG4 Other utilities

The following are utilities related to regridding which should be made public.

RG4.1 Exchange grid

A method for constructing a new grid formed by the intersecting cells of two grids shall be available.

Priority:
Source: NSIPP, MIT.
Status: Proposed.
Verification: Unit test.
Notes:

138

Part IX

Infrastructure Utilities: Time Management

1 Authors, target codes and review team

Authors: Chris Hill, Brian Eaton, Cecelia DeLuca

Review Date: 21 March, 2002

Target Codes Reviewers
GFDL-SPEC, BGRID, MOM4 (GFDL) Balaji
HIM Hallberg
CAM-EUL Eaton
FVCAM, PSAS Sawyer
POP, CICE Jones
WRF Michalakes
MITgcm Hill
NSIPP-ATM and NSIPP-OCN (NSIPP) Suarez and Keppenne
NCEP-ATM, SSI (NCEP) Iredell
Other Reviewers: DeLuca, Neckels

2 Time management background

Many of the components that will run and interact within the ESMF are prognostic simulation and data assimilation
codes employing time-stepping approaches to solve a numerical implementation of a set of mathematical equations.
Coordinating component to component interactions and coordinating interactions between components and external
systems, from which data is ingested or to which data is exported, requires precise notions of time. The role of
the ESMF Time Manager (TimeMgr) is to provide a standard set of "time services" to components running under
ESMF. The ESMF time management concepts have many parallels with real alarm clocks and with modern electronic
scheduling systems. However, ESMF applications have a number of special requirements that go beyond the facilities
that have become standard in mainstream software. The TimeMgr is designed to meet both the conventional needs and
specialized demands of Earth system applications.

2.1 Location

The time management set of "time services" will be part of the ESMF Infrastructure layer. Including these services
within the ESMF Infrastructure layer permits

� development of multiple components with compatible notions of time;

� development of a robust, core library of common time functions;

� subsequent community development of common higher-level time operations.

2.2 Scope

The time manager is not intended to be a comprehensive set of services for all time related operations. For example,
it will not include a complete time-zone capability that supports translation between all of Earth’s more than 300
timezones. Nor will it include algorithms that calculate detailed orbital quantities such as perihelion, obliquity and
precession. However, the time manager will provide a generic foundation for developing libraries that do provide such

139

custom, specialized time services. It will support this in a way that permits easy interoperability and code sharing. As
such, the time manager is anticipated to be a library of software that is targeted at both ESMF component developers
and at specialized library developers.

3 Time management summary of requirements

The basic capabilities required by the time manager are satisfied by the concepts of time intervals, time instants, clocks
and alarms, as defined in Section ??.

Time intervals and time instants are the computational building blocks of the TimeMgr library. Time intervals,
which are time periods independent of any calendar, support operations such as add, subtract, compare size, reset
value, copy value, and subdivide by a scalar. Time instants, which are moments in time associated with specific
calendars, can be incremented or decremented by time intervals, compared to see which of two time instants is later,
differenced to obtain the interval between two time instants, copied, reset, and manipulated in other useful ways. Time
instants support a host of different queries, both for values of individual time instant components such as year, month,
day and second, and for derived values such as day of year, middle of current month and Julian day. It is also possible
to retrieve the value of the hardware realtime clock in the form of a time instant.

Since climate modeling, numerical weather prediction and other Earth system applications have widely varying
time scales and require different sorts of calendars, the TimeMgr must provide a wide range of time specifiers, spanning
nanoseconds to years. The set of supported calendars includes Gregorian, no-leap, Julian, and 360-day. The TimeMgr
also supports a user-specified calendar.

Although it is possible to repeatedly step a time instant forward by a time interval using arithmetic on these basic
types, it is useful to identify a higher-level concept that encapsulates this function. We refer to this capability as a
clock, and include in its required features the ability to store reference times such as the start and stop time instants of
a model run, to check when time advancement should cease, and to query the value of quantities such as the previous
and current time instants. The TimeMgr must include methods that return a flag value when a periodic or unique event
has taken place; we refer to these as alarms. Applications may require temporary or multiple clocks and alarms.

For operations on time types, finite precision arithmetic that has defined semantics for both floating point and
integer operands is required. Arithmetic based on rational fractions, with support for arbitrarily accurate drift-free (i.e.
exact) clocks, is desired to extend the capabilities of target applications.

The time manager must satisfy the framework-wide requirements for the ESMF described in the ESMF General
Requirements (see [12]), including requirements for supported platforms, robust error handling and real and integer
precision.

4 Time management abbreviations

140

Table 1: Specifiers for time intervals, time instants, and calendar intervals.
Name Meaning

YR Integer year.
MM Integer month of year.
D Integer number of days.
d Floating point number of days.
H Integer number of hours.
h Floating point number of hours.
M Integer number of minutes.
m Floating point number of minutes.
S Integer number of seconds. May need ��� form.
s Floating point number of seconds.
MS Integer number of milliseconds.
ms Floating point number of milliseconds.
TS Integer number of 1/10,000 seconds.
US Integer number of microseconds.
NS Integer number of nanoseconds.
DD Day of month.
O Time zone offset in integer number of hours and minutes.
_nd Suffix to indicate

��� ����� ���
 � � form, where � and 	 are inte-
gers. For example, S_nd has an integer second component and
a fractional second component. _nd provides a mechanism for
supporting exact behavior.

5 Time management requirements

TMG1 Time intervals

TMG1.1 Specifying time intervals

Time intervals specified by the user shall be represented at the interface by the sum of some subset of the quantities D,
S and S_nd, MS, NS, d, m, s, ms, ns together with an optional sign. Shortcut interfaces that provide for the following
interval representations: S; D+S; s are required.

Priority: 1.
Source: WRF uses S to specify timesteps and will use S_nd;
CAM-EUL, CAM-FV, FMS codes use a D+S representation for time intervals; NSIPP, HIM and MITgcm use s;
POP, CICE require all but S_nd, NS, m, ms; NCEP requires signed s, h and D+H+M+S+MS; WRF and GFDL
desire S_nd for model enhancement
Status: Approved-1 for all except S_nd; approved-2 for S_nd.
Verification: Interface inspection, unit test.
Notes: Methods that require time interval specification can be designed with a generic interface. Such an
interface would allow the user to select the subset of time specifiers included in the argument list. This would
satisfy the needs of target codes and would also allow the interface to be extended to include other time units.
The generic interface would be implemented in F90 using named optional arguments. The same approach is
suggested for time instants.

141

TMG1.2 Time intervals as return values

It shall be possible to return the value of a time interval in a variety of representations. These shall include the
combinations listed in ?? plus d, h, m, s, ms. For returned time periods, the value of each time quantity, such as S, is
bounded by the next larger quantity in the representation. For example, for a D+S representation under a Gregorian
calendar, the value S that is returned will be such that S � 	 86399 (the length of a Gregorian calendar day in seconds).

Priority: 1.
Source: CAM-EUL requires D+S and d; GFDL requires D+S and S; NCEP requires d, h, m, s, ms; NSIPP,
HIM, MITgcm require s; POP, CICE require d, s.
Status: Approved-1.
Verification: Interface inspection, unit test.
Notes: A general conversion method between time representations may be a compact way to meet this require-
ment.

TMG1.3 Resolution

A clear statement and consistent implementation of the resolution used in time interval calculations is required. A
default precision of at least US is required to meet the current needs of target applications; NS is desired by some
applications for extensibility.

Priority: 1.
Source: CAM-EUL, GFDL, CAM-FV require S; NCEP-ATM, SSI, NSIPP require MS; WRF requires TTS;
MITgcm requires US; POP, CICE require US; MITgcm desires NS.
Status: Approved-1.
Verification: Interface inspection, unit test.
Notes: It should be possible to accommodate the highest resolution desired, NS, without difficulty.

TMG1.4 Range of time intervals

It shall be possible to use the TimeMgr to run an application over a range of at least 200,000 years.

Priority: 1.
Source: CAM-FV, NCEP, POP, CICE require at least 20,000 years; CAM-EUL, GFDL, MITgcm and NSIPP
require a range of at least 200,000 years.
Status: Approved-1.
Verification: Interface inspection, unit test.
Notes: should be possible to encompass the largest range desired. A pair of 64-bit integers can represent, in
seconds and atto-seconds (

� �
�
�����), a time range of about 300 billion years!

TMG1.5 Operations

TMG1.5.1 Change value

A time interval may have its value changed.

Priority: 1.
Source: Required for GFDL, MITgcm, CAM-FV, NSIPP, CAM-EUL, WRF.
Status: Approved-1.
Verification: Interface inspection, unit test.

142

TMG1.5.2 Copy

A time interval may be copied to another time interval.

Priority: 2.
Source: Required for GFDL, NSIPP, MITgcm, WRF.
Status: Approved-1.
Verification: Interface inspection, unit test.
Notes: This can be satisfied by using a time interval query TMG1.2 and change value combination.

TMG1.5.3 Comparison

A pair of time intervals can be compared for magnitude, equality, inequality and ordering.

Priority: 2.
Source: Required for GFDL, NSIPP, CAM-EUL, CAM-FV, MITgcm, WRF.
Status: Approved-1.
Verification: Interface inspection, unit test.

TMG1.5.4 Increment and decrement

A time interval can be incremented or decremented by another time interval.

Priority: 1.
Source: Required for GFDL, NSIPP, NCEP-ATM, CAM-EUL, CAM-FV, POP, CICE, MITgcm, WRF.
Status: Approved-1.
Verification: Interface inspection, unit test.

TMG1.5.5 Division

A time interval can be divided by another time interval, resulting in a fraction that expresses the relative magnitudes
of the two time intervals.

Priority: 2.
Source: Required for GFDL codes.
Status: Approved-2.
Verification: Interface inspection, unit test.
Notes: This is useful for some time interpolation procedures. Supporting exact division implies supporting an
_nd fraction representation.

TMG1.5.6 Subdivision

A time interval may be divided into an integer number of equally sized intervals.

Priority: 2.
Source: Required for CICE, GFDL; desired for POP and CAM-FV, WRF.
Status: Approved-2.
Verification: Interface inspection, unit test.
Notes: Exact subdivision requires S_nd support and possibly an _nd representation of the divisor. This opera-
tion can be done by application code provided the time interval query capability ?? returns a full description.

143

TMG1.5.7 Multiplication

A time interval may be multiplied by an integer or a floating point number.

Priority: 2.
Source: Required for GFDL, MITgcm, WRF.
Status: Approved-1.
Verification: Interface inspection, unit test.
Notes: Can be done by application code provided query capability ?? returns a full description.
Exact multiplication requires _nd support for multiplication factor.

TMG1.5.8 Magnitude

The absolute value of a time interval is required.

Priority: 2.
Source: Desired for GFDL codes (FMS time types are positive).
Status: Approved-1.
Verification: Interface inspection, unit test.
Notes: Can be done by application code provided query capability TMG1.2 returns a full description. Exact
magnitude requires S ��� support.

TMG1.5.9 Return in string format

Time intervals can be returned formatted as strings.

Priority: 3.
Source: Required for NCEP; desired by POP, CICE, MITgcm, WRF.
Status: Approved-2.
Verification: Interface inspection, unit test.
Notes: Formatting could be done by applications, assuming a full query capability. Discussion of the format
flexibility that might be required can be found under [10].

TMG2 Time instants

TMG2.1 Units and representation

Time instants specified by the user shall be represented at the interface by the combination of some subset of the
quantities YR, MM, DD, H, M, S, MS, NS, O, d,h,m,s and the calendar type. Shortcut interfaces shall be provided
for the following time instant representations s; YR+MM+DD+S, YR+MM+DD+HH+M+S. A generic interface for
a full specification of all terms shall also be provided.

Priority: 1.
Source: NSIPP, HIM, MITgcm require s; CAM-EUL and CAM-FV require YR+MM+DD+S; MITgcm, GFDL
requires YR+MM+DD+HH+M+S; POP, CICE require YR+MM+DD+HH+M+S, d, s;
WRF requires YR+MM+DD+H+M+S, YR+MM+DD+H+M+S_nd
Status: Approved-1.
Verification: Interface inspection, unit test.
Notes: The ranges of the date components YR, MM, DD are calendar specific. The ranges of the time of day
components M, s are not constrained to be between 0 and 60. It is, for example, possible to express the time of
day using the s component only.

144

TMG2.2 Consistency with time interval

Time resolution of a time instant must be consistent with that of a time interval. Consistency is defined in the following
way: the result of incrementing/decrementing any representable time instant by any representable time interval must
be a representable time instant, assuming it lies within the valid range of the calendar.

Priority: 1.
Source: All applications require this basic constraint.
Status: Approved-1.
Verification: Interface inspection, unit test.

TMG2.3 Supported calendars

TMG2.3.1 Gregorian calendar

Time instants may use the Gregorian calendar and UTC times. The required range of dates is as wide as possible, but
certainly not less than 10,000 years.

Priority: 1.
Source: Required for NSIPP, CAM-FV, CAM-EUL, POP, CICE, MITgcm, WRF.
Status: Approved-1.
Verification: Interface inspection, unit test.
Notes: The available range of Gregorian dates using the standard Fliegel et al.[9] algorithm is from November
25, -4713 onward. Support for leap seconds is not required.

TMG2.3.2 No-leap calendar

Time instants may use a no-leap year calendar which is the same as the Gregorian except that it does not include leap
year corrections.

Priority: 2.
Source: Required for CAM-EUL, GFDL, POP, CICE, MITgcm.
Status: Approved-1.
Verification: Interface inspection, unit test.

TMG2.3.3 Julian calendar

Full Julian calendar support is required.

Priority: 2.
Source: Required for GFDL, NSIPP.
Status: Approved-1.
Verification: Interface inspection, unit test.

TMG2.3.4 360-day and generic calendar

The TimeMgr should provide support for a generic calendar.

Priority: 1.
Source: Required for GFDL, POP, CICE, MITgcm, desired for NSIPP.
Status: Approved-1.
Verification: Interface inspection, unit test.
Notes: Often it is useful to perform an idealized simulation with a calendar that is an approximation to an actual
calendar. A commonly used configuration is a 360 day year containing 12 months of 30 days each. Each day is

145

exactly 86400 seconds. The period of rotation is assumed to be exactly one day and the orbital period around
the Sun is assumed to be exactly one year. These settings are a useful approximation for the Earth. However,
for other planets, or for idealized parameter space exploration experiments, the year length and day length need
to be adjusted. A generic calendar may be specified by the number of days in each month of the year or by the
length of the year, and the day length. The year length need not be an integer number of days, for example on
Venus a year would be 0.926 days. The range of the year number for generic calendars is -200,000 to 200,000.

TMG2.3.5 No calendar option

Time instants may use a “no calendar” option.

Priority: 3.
Source: May be useful for CAM-EUL and MITgcm, WRF.
Status: Approved-2.
Verification: Interface inspection, unit test.
Notes: It is possible to achieve this capability by ignoring the year in TMG2.3.4. The YR and MM components
of a time instant are ignored under the “no calendar” option. The range of the day number, DD, will be at least
the number of days in 200,000 years.

TMG2.4 Operations

TMG2.4.1 Change time instant value

All the components, except the calendar, of a time instant can be changed.

Priority: 1.
Source: Required by CAM-EUL, GFDL, NSIPP, CAM-FV, MITgcm, WRF.
Status: Approved-1.
Verification: Interface inspection, unit test.

TMG2.4.2 Copy

A time instant can be copied to another time instant.

Priority: 2.
Source: Required for GFDL, NSIPP, MITgcm, desired for CAM-EUL, WRF.
Status: Approved-1.
Verification: Interface inspection, unit test.

TMG2.4.3 Comparison

A pair of time instants can be checked for equality or to determine which is the later or earlier of the pair.

Priority: 1.
Source: Required for GFDL, POP, CICE, CAM-EUL, CAM-FV, MITgcm, WRF.
Status: Approved-1.
Verification: Interface inspection, unit test.

TMG2.4.4 Increment or decrement by time interval

Time instants can be incremented or decremented by time intervals.

146

Priority: 1.
Source: Required for GFDL, POP, CICE, CAM-FV, CAM-EUL, MITgcm, WRF.
Status: Approved-1.
Verification: Interface inspection, unit test.
Notes: These methods are exact.

TMG2.4.5 Increment or decrement by a calendar interval

Time instants can be incremented or decremented by years, months, or seconds.

Priority: 2.
Source: Desired for CAM-EUL, NSIPP, MITgcm.
Status: Approved-2.
Verification: Interface inspection, unit test.
Notes: Clocks conventionally operate so that increments by a month are rounded down to nearest date within
the month you incremented up to! e.g. Jan 31 + MM == Jan 30th + MM == Jan 29th + MM == Feb 28th (or
29th in a leap year). Jan 31 + 2MM == March 31. Support for S ��� will be required.

TMG2.4.6 Interval between time instants

A method shall be provided to calculate the time interval between a pair of time instants.

Priority: 1.
Source: Required for CAM-FV, GFDL, POP, CICE, CAM-EUL, MITgcm, WRF.
Status: Approved-1.
Verification: Interface inspection, unit test.
Notes: These methods are exact.

TMG2.4.7 Return in string format

Time instants may be returned formatted as strings.

Priority: 3.
Source: Desired for NCEP, POP, CICE, CAM-EUL, MITgcm, WRF.
Status: Approved-2.
Verification: Interface inspection, unit test.
Notes: Formatting can be done by applications.

TMG2.5 Queries

TMG2.5.1 Standard queries

A time instant may be queried for any of the values of YR, MM, DD, H, M, S, O, MS, NS, d, h, m, s, and the calendar
type. A query make take an O value which specifies an amount by which the returned time-instant is offset relative to
its internal O=0 value.

Priority: 1.
Source: All applications require a query that supports some subset of the list above; CAM-EUL requires YR,
MM, DD, S.
Status: Approved-1.
Verification: Interface inspection, unit test.
Notes: Time instant components will be returned in canonical form with H in the range 0 to 23, M in the range
0 to 59, and s in the range 0 to 59.999... depending on precision.

147

TMG2.5.2 Query day of year

A time instant may be queried for the day of the year represented as a floating point number with the fractional part
representing the time of day.

Priority: 2.
Source: Required for NCEP, CAM-EUL; desired for NSIPP, MITgcm, WRF.
Status: Approved-1.
Verification: Interface inspection, unit test.

TMG2.5.3 Query day of week

A time instant may be queried for the day of the week.

Priority: 2.
Source: Required for NCEP, desired for NSIPP.
Status: Approved-1.
Verification: Interface inspection, unit test.

TMG2.5.4 Query day of month

A time instant may be queried for the day of the month.

Priority: 3.
Source: Desired for CAM-EUL.
Status: Approved-1.
Verification: Interface inspection, unit test.

TMG2.5.5 Query middle of month

A time instant may be queried for the time instant of the middle of the month that the time instant falls in.

Priority: 2.
Source: Required for POP, CICE, NSIPP.
Status: Approved-1.
Verification: Interface inspection, unit test.

TMG2.5.6 Query julian day

A time instant may be queried for its Julian day.

Priority: 1.
Source: Required for NCEP.
Status: Approved-1.
Verification: Interface inspection, unit test.
Notes: NCEP codes rely on this.

TMG2.5.7 Query hardware realtime clock

Return the actual hardware realtime clock time instant in the UTC time zone.

Priority: 2.
Source: Required for NCEP, CAM-EUL; desired for NSIPP, MITgcm.
Status: Approved-1.
Verification: Interface inspection, unit test.
Notes: In order to support synchronization with an external clock, the hardware realtime clock must be returned
in a format valid as an input to a time instant change value method.

148

TMG3 Clocks

TMG3.1 Clock initialization

A clock is initialized by start and stop time instants, timestep interval, and an optional reference time instant. The
default value of the reference time instant is the start time instant. The reference time is used by the clock to provide
time coordinate values for the simulation in the form of elapsed time since a reference time.

Priority: 1.
Source: Required for CAM-FV, CAM-EUL, MITgcm.
Status: Approved-1.
Verification: Interface inspection, unit test.

TMG3.2 Multiple clocks

Components should be able to create and manipulate multiple clocks.

Priority: 1.
Source: Required for MITgcm, WRF, desired for CAM-FV.
Status: Approved-1.
Verification: Interface inspection, unit test.
Notes: In many numerical approaches several different time-steps are used for different elements of the system.
Multiple clocks are important to keep track of these different time-steps. Ensemble simulations may also require
members to proceed with different temporal trajectories, all within a single component.

TMG3.3 List of clocks

Components should be able to get a list of their clocks.

Priority: 2.
Source: Required for NSIPP, desired for CAM-FV, MITgcm.
Status: Approved-1.
Verification: Interface inspection, unit test.

TMG3.4 Operations

TMG3.4.1 Advance method

A clock has an advance method. When the clock is advanced the clock’s time instant is incremented by the clock’s
current timestep interval.

Priority: 1.
Source: Required for CAM-FV, NSIPP, CAM-EUL, MITgcm, WRF.
Status: Approved-1.
Verification: Interface inspection, unit test.
Notes: This functionality can easily be achieved without the concept of a clock, by incrementing a generic time
instant with a time interval. The clock concept bundles this capability with others that are closely related, such
as the ability to get the value of the previous time instant.

TMG3.4.2 Reset timestep interval

A clock’s timestep interval can be changed.

149

Priority: 1.
Source: Required for CAM-FV, POP, MITgcm, WRF.
Status: Approved-1.
Verification: Interface inspection, unit test.

TMG3.4.3 Change clock current time instant

A clock’s current time instant can be changed. This action causes the previous time instant to be reset to the current
time instant. The clock timestep counter does not change.

Priority: 2.
Source: Required for CAM-EUL, NSIPP, MITgcm.
Status: Approved-1.
Verification: Interface inspection, unit test.

TMG3.4.4 Restore clock state

A clock can be returned to its exact state from a previous run. This is to support a component’s restart capability. The
clock must be able to provide its state to the component, and be able to reset its state. The component is responsible
for the persistence of the clock’s state data.

Priority: 1.
Source: Required for CAM-FV, POP, CICE, CAM-EUL, MITgcm, WRF.
Status: Approved-1.
Verification: Unit test.

TMG3.4.5 Synchronize with external clock

The ability to synchronize or “attach” a clock to an external source should be supported.

Priority: 2.
Source: Required for NCEP.
Status: Approved-1.
Verification: ? Notes: Forecast scenarios require latching key events to actual wall-clock time.

TMG3.5 Queries

TMG3.5.1 Query number of timesteps

A clock can be queried for the number of times the advance method has been called. This is also known as the timestep
number. It is initialized to zero and increases monotonically.

Priority: 2.
Source: Required for POP, CICE; desired for NSIPP, CAM-EUL, MITgcm, WRF.
Status: Approved-1.
Verification: Interface inspection, unit test.

TMG3.5.2 Query timestep interval

A clock can be queried for the current timestep interval.

Priority: 1.
Source: Required for POP, CAM-FV, CAM-EUL, MITgcm, WRF.
Status: Proposed-1.
Verification: Interface inspection, unit test.

150

TMG3.5.3 Query start, stop, reference time

A clock can be queried for the start, stop, or reference time instants.

Priority: 1.
Source: Required for POP, CICE, CAM-FV, CAM-EUL, MITgcm, WRF.
Status: Approved-1.
Verification: Interface inspection, unit test.

TMG3.5.4 Query current or previous time instants

A clock can be queried for the previous or current time instants. The current time instant is equal to the start time
instant until the first call of the advance method. The previous time instant is equal to the current time instant until the
first call of the advance method.

Priority: 2.
Source: Required for POP, CICE, CAM-EUL; query current time instant required by CAM-FV, MITgcm.
Status: Approved-1.
Verification: Interface inspection, unit test.

TMG3.5.5 Query current or previous simulation times

A clock can be queried for the previous or current simulation times. The current simulation time is the time interval
between the current time instant and the reference time instant. Previous simulation time is defined analogously.

Priority: 2.
Source: Required for POP, CICE; desired for CAM-FV; query current simulation time required by MITgcm.
Status: Approved-1.
Verification: Interface inspection, unit test.

TMG3.5.6 “Is Later” query

A clock can be queried for whether or not the current time instant equals or is later than the stop time instant.

Priority: 1.
Source: Required for POP, CICE, CAM-FV, MITgcm; desired for CAM-EUL, WRF.
Status: Approved-1.
Verification: Interface inspection, unit test.
Notes: This capability may be necessary in order to implement alarms.

TMG4 Alarms

TMG4.1 Alarm initialization

An alarm is initialized by specifying the clock to which it is associated and its ringing times.

Priority: 1.
Source: Required for CAM-EUL, CAM-FV, NSIPP, POP, CICE, WRF.
Status: Approved-1.
Verification: Interface inspection, unit test.

151

TMG4.2 Multiple alarms per component

Components should be able to create and manipulate multiple alarms. Each alarm is associated with one and only one
clock; one clock may be associated with multiple alarms.

Priority: 1.
Source: Required for CAM-EUL, CAM-FV, NSIPP, POP, CICE, WRF.
Status: Approved-1.
Verification: Interface inspection, unit test.

TMG4.3 List and print of alarms

Components should be able to get a list and create a print record of their alarms.

Priority: 2.
Source: Required for NSIPP.
Status: Approved-2.
Verification: Interface inspection, unit test.

TMG4.4 Alarm states

An alarm can be either on (i.e., ringing) or off (i.e., quiet). The alarm on/off state is set when the alarm is initialized,
and can be queried at any time by the application. The alarm is turned on if the clock’s current time instant is later
than or equal to the current ringing time and the previous time instant was before the current ringing time. Otherwise
the alarm is off.

Priority: 1.
Source: Required for CAM-EUL, CAM-FV, NSIPP, WRF.
Status: Approved-1.
Verification: Interface inspection, unit test.

TMG4.5 Ring criteria

TMG4.5.1 Ring at time instant

An alarm can be set to ring at a single time instant.

Priority: 1.
Source: Required for NSIPP, POP, CICE, CAM-EUL, WRF.
Status: Approved-1.
Verification: Interface inspection, unit test.
Notes: This capability can also be accomplished with a comparison of time instants.

TMG4.5.2 Ring at interval

An alarm can be set to ring at regular intervals, for example at the beginning, middle or end of some period. The
ringing times are specified by a starting time instant (offset), a time interval, and an optional stopping time instant.

Priority:
Source: Required for NSIPP, CAM-FV, POP, CICE, CAM-EUL.
Status: Approved-1.
Verification: Interface inspection, unit test.

152

TMG4.5.3 Initial ring state

At initialization it should be possible to specify whether ringing is enabled immediately, or whether ringing tests are
deferred until after the next clock update.

Priority: 2.
Source: Required for NSIPP, POP, CICE.
Status: Approved-1.
Verification: Interface inspection, unit test.

TMG4.6 Alarm turn-off

Alarms are only turned on by the clock. A ringing alarm may be turned off either by a clock update operation that
assesses whether the current time instant lies within an interval during which the alarm should be on, and if not turns
it off; or an operation that simply turns the alarm off. application.

Priority: 1.
Source: Required for NSIPP, CAM-FV, POP, CICE, WRF.
Status: Approved-1.
Verification: Interface inspection, unit test.

TMG4.7 Restore alarm state

An alarm can be returned to its exact state from a previous run. This is to support a component’s restart capability. The
alarm must be able to provide its state to the component, and be able to reset its state. The component is responsible
for the persistence of the alarms state data.

Priority:
Source: Required for NSIPP, POP, CICE, CAM-FV, CAM-EUL, WRF.
Status: Approved-1.
Verification: Interface inspection, unit test.

TMG4.8 Alarm queries

Alarms have query methods for previous, current, and next ringing times. When an alarm is initialized the previous
ringing time is set to the current ringing time.

Priority:
Source: Required for POP, CICE, desired for NSIPP.
Status: Approved-1.
Verification: Interface inspection, unit test.

TMG5 Accuracy of calculations

Accuracy of calculations with time instants and time intervals.

TMG5.1 Exact increment and decrement

Incrementing or decrementing time instants by exact time intervals is exact. By exact incrementing of time instants
by time intervals we mean the following. Given a time instant � � ��� � and a time interval

� � , incrementing � ����� � by
� � �

successive times gives the same result as incrementing � ����� � by an interval
���

where
���

is the result of incrementing� � by
� � , � � �

� ! times. Exact decrementing is defined analogously.

153

Priority: 1.
Source: Required for CAM-FV, GFDL, NSIPP, CAM-EUL, desired for MITgcm, WRF.
Status: Approved-1.
Verification: Unit test.

TMG5.2 Exact interval calculation

Calculating the interval between exact time instants is exact.

Priority:
Source: Required for CAM-FV, GFDL, NSIPP, CAM-EUL, desired for MITgcm, WRF.
Status: Approved-1.
Verification: Unit test.
Notes: Given time instants � ����� � and ��� ������� , then the calculated difference between these instants,

� � , has the
property that incrementing � ����� � by

� � gives ��� ������� .

TMG5.3 Exact subdivision

Exact division of time intervals into an integral number of subintervals.
To ensure a drift free clock the following behavior must be true:
if adding (or subtracting) a time interval,

� � , to a time instant � � � � � yields a new time instant � � ������� i.e.
� � ������� 	 � ����� �

� �
then it must be possible to specify a fractional time interval

� � 	 ����
� � such that

� � ������� 	 � ����� �

� �	� � � � � �

� �
 � �
and similarly for

��
 	 �
 �
� � , � �
� � 	 �� �

� � .
Priority:
Source: Desired for CAM-FV, GFDL, MITgcm, WRF.
Status: Approved-2.
Verification: Unit test.
Notes:Such behavior is not possible with finite-precision floating point arithmetic. The fractional second part
of both time instants and time intervals must be able to exactly represent rational values. If partial seconds
represented as rational numbers is supported, then the precision of time intervals and time instances must be
��� �

seconds where
�

is the largest value of the denominator. Thus an _nd representation is required to fully
support this.

TMG5.4 Floating point accuracy consistent with time step

Clock accuracy comparable with numerical scheme accuracy should be supported. Applications that employ an adap-
tive time-step for their numerical procedures need to be able to drive their time manager clocks with that step. This
should be possible even for application time steps that are arbitrary floating point numbers i.e. not a whole number of
seconds, or minutes.

Priority: 1.
Source: Required for NSIPP, MITgcm.
Status: Approved-2.
Verification: Unit test.

TMG6 Cross-component clock and alarm queries

.

154

TMG6.1 Cross-component query

Components should be able to query the clock(s) or alarms of another component and components should be able to
manipulate certain clock(s) and alarms of another component.

Priority:
Source: Desired for POP, CICE, NSIPP, MITgcm.
Status: Approved-2.
Verification: Unit test.
Notes: Synchronized shutdown notifications will be sent to components through clock and alarm settings. These
notifications may be generated by a high-level control program or a coupler component. However, components
should be able to determine which clocks and alarms can be externally manipulated so that they can assume that
certain clocks and alarms are private.

TMG6.2 Clock and alarm labels

Components should be able to "label" their clocks and alarms.

Priority:
Source: Required for POP, CICE, MITgcm; desired for NSIPP.
Status: Approved-2.
Verification: Unit test.
Notes: When coordinating notions of time among components with several clocks or alarms, it is important to be
able to identify the role of each clock or alarm. For instance, a component might want to declare a master clock
that defines the overall time within a component, or components might need to declare a standard alarm that can
be used by a higher-level driver layer or a coupler component to trigger the generation of restart information or
to trigger a clean shutdown.

TMG7 General computational requirements

TMG7.1 Error handling

The TimeMgr services must conform to the error handling specifications described in the ESMF General Requirements
document [12] and, when available, the ESMF Error Handling Requirements document. The requirements below are
some special error handling capabilities needed for the TimeMgr .

TMG7.1.1 Check validity

A time interval or time instant may have its validity checked. An invalid time interval should create a recoverable error
condition so that a component can decide on the error action.

Priority: 1.
Source: Required for CAM-EUL, CAM-FV, GFDL, NSIPP, MITgcm.
Status: Approved-1.
Verification: Interface inspection, unit test.

TMG7.2 Overloaded arithmetic operators

Overloaded arithmetic operator syntax should be used for time instant and time interval operations such as increment
and decrement.

155

Priority: 2.
Source: Required for GFDL; useful for CAM-EUL.
Status: Approved-1.
Verification: Unit test.

TMG7.3 Automatic memory deallocation

It shall be possible to create a time interval, time instant, clock or alarm as a local variable, so that is not necessary to
explicitly free the memory associated with it.

Priority: 2.
Source: Required for GFDL; desired for CAM-EUL, CAM-FV, NCEP, MITgcm.
Status: Approved-1.
Verification: Interface inspection, unit test.
Notes: This requirement implies that internal pointers are not allowed. If deletion is not automatic, a destructor
will be required.

TMG7.4 Temporary objects

A shall be possible to create temporary clocks and alarms.

Priority: 2.
Source: Desired for NSIPP, MITgcm.
Status: Approved-1.
Verification: Interface inspection, unit test.

TMG7.5 Thread safety

Operations on time intervals and time instants will be thread-safe.

Priority: 3.
Source: Useful for CAM-EUL, MITgcm.
Status: Approved-1.
Verification: Unit test.

Reference Material

[1] International Earth Rotation Service (IERS) http://hpiers.obspm.fr
IERS Bulletins
IERS Constants

[2] CSM Time Conventions

[3] OMG
CORBA Time Service Specification Version 1.0 ftp://ftp.omg.org/pub/docs/formal/00-06-26.pdf

[4] US Naval Observatory
US Naval Observatory Time Pages

[5] W3C Date and Time Note

156

[6] NIST Time and Date Material

[7] A Calendar FAQ.

[8] Some notes on the ISO8601 time and date specification standard.

[9] Fliegel, H.F. and Van Flandern, T.C., Comm.ACM V11 N10, Oct 1968, p657 Press, W.H., et.al. (1986) ’Numer-
ical Recipes’, Cambridge, pp 10-13

[10] The JAVA Calendar Class

[11] Software Requirements. Karl Eugene Wiegers. Microsoft Press, 1999. ISBN 0-7356-0631-5.

[12] y ESMF General Requirements. ESMF Joint Specification Team, 2002.

157

Part X

Infrastructure Utilities: Communication and
Memory Kernels

1 Target Codes and Review Team

Sign-Off Date: <Date>

Target Codes Reviewers
GFDL-SPEC, BGRID, MOM4 Balaji
HIM Hallberg
CAM-EUL, CLM Eaton
CAM-FV, PSAS da Silva
POP, CICE Jones
WRF Michalakes
MIT-REG, MIT-CPL, ADJ Hill
NSIPP-ATM, NSIPP-OCN Suarez
NCEP-ATM, SSI Iredell

Other Reviewers: DeLuca, Neckels

2 Background

The communication and memory kernels elements of ESMF provide a set of services that shield the upper levels
of ESMF from system level functions. Two related ares are addressed. The basic communication primitives that
are building blocks for both the data communication between and within components and the control messages that
components may need to exchange.

One reason for isolating this section of ESMF is to help absract the communication primitives to allow highly
optimized code, targeted to specific platforms and to specific framework functions to be easliy inserted into ESMF.
The CMK layer will allow specialized forms of performance critical primitives to be employed without impacting
application code or upper layers of ESMF code.

Channeling communication and ESMF memory allocation through a single layer is also designed to support detiled
application-level monitoring.

Infiniband, LAPI example, IPC + LAPI, Myrinet global sum v. GM sum. Overlapping co-processor v. non-co-
proc. overlap VIA, Giganet, Servernet -> convergence FDDI

<Desciption of this class, module or utility set.>

2.1 Location

<Describe whether this software is in the infrastructure or superstructure, and other software modules that it interacts
with.>

2.2 Scope

<Discussion of scope and restrictions.>

158

Table 2: <Table name>
Name Meaning

IT1 <Item 1.>
IT2 <Item 2.>

2.3 Related Material

3 Communication and Memory Kernels Abbreviations

159

CMK1 Basic, portable MPI based transport

CMK1.1 A baseline MPI based build must be available

Priority: Priority 1
Source:
Status:
Verification:
Notes:

CMK2 Basic, portable threads based parallelism

Priority: Priority 1
Source:
Status:
Verification:
Notes:

Reference Material

[1] Earth system modeling framework. http://www.esmf.ucar.edu, 2002.

[2] A. Arakawa. Computational design for long-term numerical integration of the equations of atmospheric motion.
J. Comp. Phys., 1:119–143, 1966.

[3] V. Balaji. Parallel numerical kernels for climate models. In ECMWF, editor, ECMWF Teracomputing Workshop.
World Scientific Press, 2001.

[4] R. Heikes and D. A. Randall. Numerical Integration of the Shallow-water Equations of a Twisted Icosahedral
Grid. Part I: Basic Design and Results of Tests. Monthly Weather Review, 123:1862–1880, 1995.

[5] P.W. Jones. First- and second-order conservative remapping schemes for grids in spherical coordinates. Monthly
Weath. Rev., 127:2204–2210, 1999.

[6] D. Majewski, D. Liermann, P. Prohl, B. Ritter, M. Buchhold, T. Hanisch, G. Paul, and W. Wergen. The Oper-
ational Glbal Icosahedral-Hexagonal Gridpoint Model GME: Description and High-Resolution Tests. Monthly
Weather Review, 130:319–338, 2002.

[7] Ross J. Murray. Explicit generation of orthogonal grids for ocean models. J. Comp. Phys., 126:251 – 273, 1996.

[8] M. Rancic, R.J. Purser, and F. Mesinger. A global shallow-water model using an expanded spherical cube:
Gnomonic versus conformal coordinates. Quart. J. Roy. Meteor. Soc., 122:959 – 982, 1996.

[9] Wiegers, K. E. Software Requirements. Microsoft Press, 1999.

[10] Womack, B., Higgins, G. Software Engineering Support of the Third Round of Scientific Grand Challenge
Investigations. General Requirements Analysis. NASA/CT Internal Document, 2002.

160

Part XI

Infrastructure Utilities: Configuration Atrributes

161

1 Configuration Attributes Overview

2 Target Codes and Review Team

Sign-Off Date: <Date>

Target Codes Reviewers
GFDL-SPEC, BGRID, MOM4 Balaji
HIM Hallberg
CAM-EUL, CLM Eaton
CAM-FV, PSAS da Silva
POP, CICE Jones
WRF Michalakes
MIT-REG, MIT-CPL, ADJ Hill
NSIPP-ATM, NSIPP-OCN Suarez
NCEP-ATM, SSI Iredell

Other Reviewers: DeLuca, Neckels

3 Introduction

4 Background

As part of their state Earth system models need to maintain ad-hoc sets of parameters. These parameters can be related
to physical terms (for example mixing coefficients, length scales or time scales) or can be related to computational
aspects (for example directory names, output and input locations). Some of these parameters will be explicitly set
by user input at runtime, others may be automatically determmined from system defaults or from other utilities. The
parameters may be single valued or may be multi-dimensional. Parameters can be of various types float, integer,
logical, string.

The configuration attributes element of ESMF will enable these parameters or attributes to be recorded and pro-
vided services for setting attributes from human readbale text files and for saving attributes to persistent storage in
appropriate formats.

Providing a standard service for configuration attributes will enable ESMF to provide enhanced inteoperability
capabilities. In particular the attributes facility will allow components to auotmatically share attribute settings.

4.1 Location

The configuration attributes element of ESMF will be part of the Infrastructure/Utilities area. Other upper layer tools
may use the configuration attributes internally. User-level component code will also use the configuration attributes
element.

4.2 Scope

Compile time and runtime setting of parameters will initially be through text based specification. Extensive automatic
systems for choosing parameters or GUI based systems for manipulating parameters are not required within the initial
ESMF development scope. Such systems are however highly desireable and it is envisaged that such systems would
one-day interface with ESMF applications in part through the configuration attributes services. Another area that is
outside the present scope of the inial ESMF project is automated, structured archival of attribute information along
with other numerical experiment state. However, again this would be a useful concept to layer on top of ESMF.

162

Table 3: <Table name>
Name Meaning

IT1 <Item 1.>
IT2 <Item 2.>

4.3 Related material

Property sheets used in many component based programming environments, for example the property sheet notion sys-
tems like Visual C++ (see the CPropertySheet and CPropertyPage MFC classes), .NET and J2SE (see java.beans
class), have parallels with the concepts that need to be supported here. All the ESMF JMC codes contain services of
this nature with widely varying degress of spohistication (see for exmple MOM documentation, MITgcm documenta-
tion, CCSM documentation). In most cases the existing ESMF JMC codes use the Fortran NAMELIST facility. The
widely used dot files and dot subdirectories used for all manner of application configuration on UNIX platforms also
perform similar roles (see for example the pine mail reader documentation or the OpenSSH package documentation)
to some of the functions envisaged here, as does the Windows registry concept (see Windows registry doumentation).

5 Configuration Attributes Terms

NAMELIST An I/O feature supported by Fortran that defines a structured syntax for creating text files of initial
variable settings and defines language features for compactly reading the files. Most ESMF codes use the
NAMELIST features in Fortan, but the feature has several deficiencies and limited capabilities. The ESMF
configuration attributes facility addresses these deficiencies and limitations. The syntax for NAMELIST files
can be found in most Fortran manuals and tutorial texts.

<item2> glos:item2> <Description item 2.>

6 Configuration Attributes Abbreviations

163

7 Configuration Attributes Requirements

CA1 A human friendly format for parameter specification should be pro-
vided

CA1.1 Text files specifying parameters should allow comments

A simple form of # at the beginning of a comment line should suffice.

Priority: <Priority 1-3>
Source: MITgcm
Status: <Proposed, Approved-1, Approved-2, Rejected, Implemented, Verified>
Verification: <e.g., Code inspection, Unit test, System test>
Notes: <Background, comments on design, implementation, etc.>

CA1.2 Text file parsing errors should at the least provide

file name, line of file, meaningful error message logged in an easy to find location

Priority: <Priority 1-3>
Source: MITgcm
Status: <Proposed, Approved-1, Approved-2, Rejected, Implemented, Verified>
Verification: <e.g., Code inspection, Unit test, System test>
Notes: <Background, comments on design, implementation, etc.>

CA1.3 Text file syntax should be backwards compatible with NAMELIST formats.

The existing NAMELIST formats used by the JMC codes need to be parseable as Configuration Attributes. This
could be through conversion or through a CA format that only extends the NAMELIST format i.e. that includes the
NAMELIST format as a subset. The full CA format does not need to be compatible with the NAMELIST standard.

Priority: <Priority 1-3>
Source: MITgcm
Status: <Proposed, Approved-1, Approved-2, Rejected, Implemented, Verified>
Verification: <e.g., Code inspection, Unit test, System test>
Notes: <Background, comments on design, implementation, etc.>

CA2 Attributes can be sub-classified

A system for grouping attributes into sub-categories within an ESMF application would be useful.

Priority: <Priority 1-3>
Source: MITgcm
Status: <Proposed, Approved-1, Approved-2, Rejected, Implemented, Verified>
Verification: <e.g., Code inspection, Unit test, System test>
Notes: <Background, comments on design, implementation, etc.>

164

CA3 Attributes can be optional and could be introduced at runtime

There should be no need to specify all attributes. It should also be possible to introduce a new attribute e.g. fred=7
without having to modify the attribute parser code.The Fortran NAMELIST requires that all attributes be listed in the
parsing routine. This should not be mandatory in CA.

Priority: <Priority 1-3>
Source: MITgcm
Status: <Proposed, Approved-1, Approved-2, Rejected, Implemented, Verified>
Verification: <e.g., Code inspection, Unit test, System test>
Notes: <Background, comments on design, implementation, etc.>

CA4 A system for defaults and overrides should be supported

It should be possible to have a set of default attribute settings and only require overrides to be specified.

Priority: <Priority 1-3>
Source: MITgcm
Status: <Proposed, Approved-1, Approved-2, Rejected, Implemented, Verified>
Verification: <e.g., Code inspection, Unit test, System test>
Notes: <Background, comments on design, implementation, etc.>

CA5 A system that is compatible with unique naming should be devised

For example it should be possible to refer to an attribute with a name such as gov.gfdl.mom4.timestepping.deltat. It
should be possible to determine whether the name matches uniquely or has multiple matches (e.g. for the above
example an application with an ensemble of mom4 components would have multiple matches).

Priority: <Priority 1-3>
Source: MITgcm
Status: <Proposed, Approved-1, Approved-2, Rejected, Implemented, Verified>
Verification: <e.g., Code inspection, Unit test, System test>
Notes: <Background, comments on design, implementation, etc.>

CA6 Components should be able to query the attributes of other compo-
nents

This will be the main benefit of CA to ESMF.

Priority: <Priority 1-3>
Source: MITgcm
Status: <Proposed, Approved-1, Approved-2, Rejected, Implemented, Verified>
Verification: <e.g., Code inspection, Unit test, System test>
Notes: <Background, comments on design, implementation, etc.>

165

CA7 Components should be able to set attributes to be writable by other
components

Queries will be red-only, however it could also be useful to ultimately allow one component to set a value of another
components attributes. For example in ensemble simulations or computational steering a driver component could
control other components.

Priority: <Priority 1-3>
Source: MITgcm
Status: <Proposed, Approved-1, Approved-2, Rejected, Implemented, Verified>
Verification: <e.g., Code inspection, Unit test, System test>
Notes: <Background, comments on design, implementation, etc.>

Reference Material

[1] Earth system modeling framework. http://www.esmf.ucar.edu, 2002.

[2] A. Arakawa. Computational design for long-term numerical integration of the equations of atmospheric motion.
J. Comp. Phys., 1:119–143, 1966.

[3] V. Balaji. Parallel numerical kernels for climate models. In ECMWF, editor, ECMWF Teracomputing Workshop.
World Scientific Press, 2001.

[4] R. Heikes and D. A. Randall. Numerical Integration of the Shallow-water Equations of a Twisted Icosahedral
Grid. Part I: Basic Design and Results of Tests. Monthly Weather Review, 123:1862–1880, 1995.

[5] P.W. Jones. First- and second-order conservative remapping schemes for grids in spherical coordinates. Monthly
Weath. Rev., 127:2204–2210, 1999.

[6] D. Majewski, D. Liermann, P. Prohl, B. Ritter, M. Buchhold, T. Hanisch, G. Paul, and W. Wergen. The Oper-
ational Glbal Icosahedral-Hexagonal Gridpoint Model GME: Description and High-Resolution Tests. Monthly
Weather Review, 130:319–338, 2002.

[7] Ross J. Murray. Explicit generation of orthogonal grids for ocean models. J. Comp. Phys., 126:251 – 273, 1996.

[8] M. Rancic, R.J. Purser, and F. Mesinger. A global shallow-water model using an expanded spherical cube:
Gnomonic versus conformal coordinates. Quart. J. Roy. Meteor. Soc., 122:959 – 982, 1996.

[9] Wiegers, K. E. Software Requirements. Microsoft Press, 1999.

[10] Womack, B., Higgins, G. Software Engineering Support of the Third Round of Scientific Grand Challenge
Investigations. General Requirements Analysis. NASA/CT Internal Document, 2002.

166

Part XII

Infrastructure Utilities: Performance Profiling

1 Authors, target codes and review team

Authors: David Neckels, Jim Rosinski

Review Date: TBD

Target Codes Reviewers
GFDL-SPEC, BGRID, MOM4 Balaji
HIM Hallberg
CAM-EUL, CLM Rosinski
CAM-FV, PSAS da Silva, Zaslavsky, Sawyer
POP, CICE Jones
WRF Michalakes
MIT-REG, MIT-CPL, ADJ Hill
NSIPP-ATM, NSIPP-OCN Suarez
NCEP-ATM, SSI Iredell, Young

Other Reviewers: DeLuca, Neckels, Jacob, Larson

2 Background

In order to efficiently optimize code, it is necessary to gain an understanding of how much processor time is spent
in individual code sections. It is also sometimes necessary to obtain hardware information such as number of flops,
cache hits/misses, and processor cycles, amongst other things. With this information in hand it is possible to identify
code bottlenecks and re-arrange a progam so that it calculates its results most efficiently.

The goal of this library is to provide a API for this type of profiling and to provide a reporting capability to nicely
summarize the results.

2.1 Location

The profiler is a part of the Infrastructure. It is a low level class and does not have many dependencies. It will, however,
be used by a number of the other classes in the library.

2.2 Scope

The profiler is responsible for code timings, and hardware profiling. It also will report the results of this survey.

167

3 Performance profiling requirements

PP1 Code section timing

The profiler will have a means to time individual code sections. An API will be provided so that a user may insert
calls to the profiler at the beginning and end of a passage of interest.

Priority:
Source: CAM-EUL, CAM-FV, CLM, CCSM-CPL, POP, CICE, PSAS, MIT
Status: Proposed
Verification: Code Inspection
Notes:

PP1.1 Named timers

Calls for recording time may be placed around numerous different code sections, and the library shall provide a means
for distinguishing these separate calls. When the results of the timing are reported, each timer will be associated with
its name.

Priority:
Source: CAM-EUL, CAM-FV, CLM, CCSM-CPL, POP, CICE, PSAS, MIT
Status: Proposed
Verification: Code Inspection
Notes:

PP1.1.1 Named timer reset

A named timer may be reset at any time. All data will be cleared.

Priority:
Source: MIT
Status: Proposed
Verification: Code Inspection
Notes:

PP1.2 Types of time

There are a number of different types of “time” that may be of interest to a profiler. These various types of time can
be recorded. Each will be recorded separately and reported as such. The various types are enumerated below:

PP1.2.1 User time

Process user time can be recorded. The timer will provide a means to estimate and reconcile the extra time added by
its usage.

Priority:
Source: CAM-EUL, CAM-FV, CLM, CCSM-CPL, POP, CICE, PSAS, MIT
Status: Proposed
Verification: Code Inspection
Notes: It is desirable to offer a mechanism which removes the intrusiveness of the timing calls themselves; there
are mechanisms to estimate the timing call overhead (WS).

168

PP1.2.2 System time

System time can be recorded.

Priority:
Source: CAM-EUL, CAM-FV, CLM, CCSM-CPL, POP, CICE, PSAS, MIT
Status: Proposed
Verification: Code Inspection
Notes:

PP1.2.3 Wall clock time

Wall clock time can be recorded.

Priority:
Source: CAM-EUL, CAM-FV, CLM, CCSM-CPL, POP, CICE, PSAS, MIT
Status: Proposed
Verification: Code Inspection
Notes:

PP2 Hardware counters

Most computers have special registers which keep track of information such as floating point operations, cycles, and
cache hits/misses. The profiler will provide a high level interface for accessing these registers. Collection of the
following data will be supported, where available:

� Floating Point Ops

� Cache Utilization

� Cache Misses

� Floating Point Unit Utilization

� Cycle Counts

Priority:
Source: CAM-EUL, CAM-FV, CLM, CCSM-CPL, POP, CICE, PSAS, MIT
Status: Proposed
Verification: Code Inspection
Notes:

PP3 Process granularity

The profiler will be able to operate within a nested structure of processes (e.g. from MPI process 3, thread 6).

Priority:
Source: CAM-FV, POP, CICE, PSAS, MIT
Status: Proposed
Verification: Code Inspection
Notes:

169

PP3.1 Process level

The profiler can be called safely from any process (MPI or other). It will identify and report which process it was
called from.

Priority:
Source: CAM-EUL, CAM-FV, CLM, CCSM-CPL, POP, CICE, PSAS, MIT
Status: Proposed
Verification: Code Inspection
Notes:

PP3.2 Thread level

The profiler can be called safely from any thread. It will identify and report which thread it was called from.

Priority:
Source: CAM-EUL, CAM-FV, CLM, CCSM-CPL, POP, CICE, PSAS, MIT
Status: Proposed
Verification: Code Inspection
Notes:

PP4 Reporting

The profiler will provide a means to output the data collected. This output may be called at any point of execution, as
many times as desired.

PP4.1 Log output

The profiler will write its output via the log.

Priority:
Source: MIT
Status: Proposed
Verification: Code Inspection
Notes:

PP4.2 API retrieval

The profiler data will be accessible to the program by means of an API.

Priority:
Source: MIT
Status: Proposed
Verification: Code Inspection
Notes:

PP4.3 Statistics

The profiler will be able to perform a variety of statistical analysis on its call data and report.

170

PP4.3.1 Thread statistics

A named timer can perform analysis across threads and report the minimum amount of time spent in any thread, the
maximum, and the mean.

Priority:
Source: MIT
Status: Proposed
Verification: Code Inspection
Notes:

PP5 Call deactivation

Calling profiling routines typically has a performance impact and should not be done during production runs. Therefore
there will be some mechanisms to disable the profiling calls.

PP5.1 Compile deactivation

The library can be turned into stub calls at compile time.

Priority:
Source: CAM-EUL, CAM-FV, CLM, CCSM-CPL, PSAS, MIT
Status: Proposed
Verification: Code Inspection
Notes:

PP5.2 Runtime deactivation

A flag may be set so that calls to the profiling library do no more than check this flag and return.

Priority:
Source: CAM-EUL, CAM-FV, CLM, CCSM-CPL, POP, CICE, PSAS, MIT
Status: Proposed
Verification: Code Inspection
Notes: It is particularly useful to be able to do some timing early on in a run to predict time to completion and
then have the timing switch itself off.

171

Part XIII

Infrastructure Utilities: Log

1 Authors, target codes and review team

Authors: David Neckels, Shep Smithline, Jim Rosinski

Review Date: TBD

Target Codes Reviewers
GFDL-SPEC, BGRID, MOM4 Balaji, Smithline
HIM Hallberg
CAM-EUL, CLM Boville
CAM-FV, PSAS da Silva
POP, CICE Jones
WRF Michalakes
MIT-REG, MIT-CPL, ADJ Hill
NSIPP-ATM, NSIPP-OCN Suarez
NCEP-ATM, SSI Iredell

Other Reviewers: DeLuca, Neckels, Larson

2 Background

Output data from programs usually consists of a combination of numerical data, stored in formats such as NetCDF, vi-
sual data, and diagnostics. The log utility is intended to organize diagnostic output. Many programs use simple fortran
write statements, and the output resulting from such statements in the multiprocessor environment is unpredictable
and inconsistent at best. The utility tries to make this behavior predictable across computing environments. It also
attempts to organize the diagnostic output so that searches and filters may be easily constructed.

2.1 Location

This utility is part of the infrastructure. This is an extremely low level object and will be used by most of the other
objects in the project. It will thus not depend on the other objects in the library save perhaps the machine model.

2.2 Scope

The log will be for diagnostic output. The bandwidth is assumed to be moderate to small, i.e. it will not be used to
output large streams of numerical model output data.

172

LG1 Log requirements

LG2 Interface characteristics

The log shall provide a simple interface with a minimal number of steps needed to begin use. The main messaging
interface function shall be as close to the fortran write statement as possible.

Priority:
Source: CAM-EUL, CAM-FV, CLM, CCSM-CPL, POP, CICE, PSAS, MIT
Status: Proposed
Verification: Code Inspection
Notes:

LG2.1 Fortran write interface

The log shall provide an interface that supports the fortran format notation. Therefore the log will be able to print
out strings, reals, integers, arrays, and other built in fortran types.

Priority:
Source: CAM-EUL, CAM-FV, CLM, CCSM-CPL, POP, CICE, PSAS , MIT
Status: Proposed
Verification: Code Inspection
Notes:

LG2.2 Printf style interface

The log shall have a printf style interface so built in datatypes may be printed using the flexible format of printf.

Priority: 3
Source: MIT
Status: Proposed
Verification: Code Inspection
Notes:

LG3 Log states/levels

Each log message will have a level attached to it so that setting certain run states will allow turning certain classes of
output on and off.

Priority:
Source: POP(desired), MIT
Status: Proposed
Verification: Code Inspection
Notes:

LG4 Output medium

The output from the log shall be to files.

173

Priority:
Source: CAM-EUL, CAM-FV, CLM, CCSM-CPL, POP, CICE, PSAS, MIT
Status: Proposed
Verification: Code Inspection
Notes:

LG5 Process organization

The library will allow output from different MPI processes to be distinguished and/or grouped together. Output from
these processes can be written to some set of groupings of files, (e.g. one file per process, one file for all processes).

Priority:
Source: CAM-EUL, CAM-FV, CLM, CCSM-CPL, POP, CICE, PSAS, MIT
Status: Proposed
Verification: Code Inspection
Notes: Output to one file should be sequentialized in a sensible manner (WS).

LG6 Flush command

The API will provide a flush command that will force the output to appear in the file(s) upon call.

Priority: 1
Source: CAM-EUL, CAM-FV, CLM, CCSM-CPL, PSAS , MIT
Status: Proposed
Verification: Code Inspection
Notes:

174

Part XIV

Infrastructure Utilities: I/O

1 Authors, target codes and review team

Authors: Leonid Zaslavsky, Arlindo da Silva, Michael Young, Mark Iredell

Review Date: 16 May, 2002

Target Codes Reviewers
GFDL-SPEC, BGRID, MOM4 Balaji
HIM Hallberg
CAM-EUL, CLM Craig
CAM-FV, PSAS da Silva
POP, CICE Jones
WRF Michalakes
MIT-REG, MIT-CPL, ADJ Hill
NSIPP-ATM, NSIPP-OCN Suarez
NCEP-ATM, SSI Iredell, Young

Other Reviewers: DeLuca, Neckels, Jacob
Earth system modeling applications require efficient and robust tools for input and output of structured and un-

structured gridded data, as well as observational data streams. Interfaces and methods provided by ESMF should allow
reading and writing of data in several standard formats as well as support efficient internal data representations (see
ESMF General Requirements [12], Section 8.1.3). The ESMF IO is supposed to provide a unified interface for input
and output of high level ESMF objects such as Fields. The system is expected to automatically detect file formats at
runtime, and to output data in a variety of formats, with the posibility of creating companion metadata files. Other file
IO functionalities, such as writing of error and log messages and input of configuration parameters from an ASCII file,
are not covered in this document. These will be the subject of the ESMF Log Requirement Document and the ESMF
Control Requirement Document [?, ?].

1.1 I/O architecture

We use the experience of the WRF [?] and FMS [?] projects in defining the ESMF I/O architecture that is efficient,
flexible, end-to-end, and package neutral. Our principles will be:

- Define a standard unified I/O interface and API covering ESMF-supported data models.

- Provide efficient implementation of this API for multiple data formats supported by the ESMF.

1.2 Data models

Earth system models use a variety of discrete grids to maintain information about fields in continuous space, as well as
observations. The primary ESMF codes employ finite-difference and finite-volume grids, spectral grids, unstructured
land-surface grids, and ungridded observational networks.

Fields within a model component are frequently defined on the same physical grid and are decomposed in memory
in an identical fashion; that is, they share a distributed grid. They form a bundle of fields defined on the same distributed
grid. The gridded data are supported by three ESMF elements: PhysGrid element for physical grids, DistGrid element
for distributed grids, and Fields class for fields ([?], [?], [?]).

ESMF I/O will support input/output of data defined on all ESMF supported grids and location streams ([?], [?]).
For the purpose of this document, we will consider data beloging to three broad categories:

175

Structured Gridded Data. A structured grid is one on on which the relationship between gridpoints can be derived
from their indices, without he need for an explicit map. A simple example fields defined on a rectangular lat/lon
grid.

Unstructured Gridded Data. For the more general unstructured grid the relationship between gridpoints cannot be
derived from their indices, and the specification of an explicit map is necessary. An example is a catchment grid
used by soime land-surface models.

Observational Data on location streams. As defined in the Phisycal Grid Requirements, a location stream contains
a list of locations

describe the measurements. Each observation is associated with a a spatial point or region.A neighbor relation-
ship is not defined for observations.

As we have already mentioned, logically rectangular grids are naturally represented by multi-dimensional arrays.
The two latter data models can be represented as one-dimensional arrays of structures with each structure containing
information about location, field values associated with this location, and a list of neighbors, if relevant.

1.3 Metadata. ESMF metadata conventions

Metadata is data about a digital object, “structured data about the data”. The metadata is usually provided by the
creator or distributor of the object, and often either accompanies the object or is embedded in the file header. As such,
metadata can be very useful as the basis for information storage and retrieval systems, as well as for utilization of
the data within Earth Science models. The information about the object provided by metadata allows optimization of
resource allocation and organization of storage and retriaval of data. In parallel computing, such a knowledge may be
especially important.

If metadata are provided, the files may be either self-described or co-described, depending on the fashion in which
metadata are allocated.

A self-described file contains in its header all metadata necessary to provide a unique interpretation of the file content
assuming certain conventions.

A co-described file is accompanied by a metadata file. The metadata file provides a unique interpretation of the data
file content under certain conventions.

It is assumed the metadata can be rapidly read by a corresponding API without reading an entire content of the data
file. Some data files may contain complete description of their content, but the way data are represented might not
allow rapid extraction of metadata. To make such a file co-described, its metadata could be extracted and allocated to
a companion metadata file.

Some file formats that we discuss bellow, such as NetCDF and HDF, are organized according to well-defined rules.
Their structures and APIs enable (but do not require) creation of self-described files. By narrowing the defintions,
conventions enable a complete and unique description of each dataset.

We assume that the NetCDF conventions for climate and forecast metadata, “CF conventions”, will serve as a
a basis for ESMF metadata conventions. NetCDF Climate-Forecast Metadata Conventions [?] narrow definitions of
NetCDF, an array-oriented data format and a library for gridded data [?], to allow a unique and complete description
of gridded data used in geoscience. CF conventions specify standard dimensions, such as date or time (�t), height or
depth (z), latitude (y), and longitude (x), and specify standard units for these dimensions and other quantities.

We expect ESMF metadata conventions to be based on the CF-conventions, and to cover fields defined on both
structured and unstructured grids, as well as observational data. Unlike the CF conventions which are tightly associated
with NetCDF, the ESMF conventions are supposed to be format neutral, and cover all of the ESMF data formats.
These extensions will become the ESMF standard, and will be enforced by the ESMF I/O subsystem. However, the
specification of ESMF metadata is optional, and users desiring not to specify any metadata should be able to do so.

176

1.4 Data formats

Several standard formats are currently used in Earth Science modeling for input/output of data:

NetCDF Network Common Data Form (NetCDF) is an interface for array-oriented data access. The NetCDF library
provides an implementation of the interface. It also defines a machine-independent format for representing
scientific data. Together, the interface, library, and format support the creation, access, and sharing of scientific
data. The NetCDF software was developed at the Unidata Program Center in Boulder, Colorado. See [?]. In
geoscience, NetCDF can be naturally used for represenation of fields defined on logically rectangular grids.
NetCDF use in geosciences is specified by CF conventions mentioned above [?].

To the extent that data on unstructured grids (or even observations) can be represented as one-dimensional arrays,
NetCDF can also be used to store these data. However, it does not provide a high-level abstraction for this type
of data.

DODS The Distributed Oceanographic Data System is a system that allows access to data over the internet. DODS is
created and supported by Unidata Program Center in Boulder, Colorado. See [?]. DODS enables an implemen-
tation of NetCDF-client libraries that permits remote access to data through the Internet.

HDF The Hierarchical Data Format (HDF) project provides interface, software and file formats for scientific data
management. The HDF software includes I/O libraries and tools for analyzing, visualizing, and converting
scientific data.

HDF is developed and supported at the National Center for Supercomputing Applications, University of Illinois
at Urbana-Champaign. There are two different HDF formats, HDF (4.x and previous releases) and HDF5. These
formats are completely different and not compatible. See [?], [?].

HDF Scientific Data Sets API allows efficient operating with multi-dimensional arrays. Although HDF SDS
itself does not provide a way to represent high-level abstractions for data on unstructured grids and observational
data sets, HDF-based applications, such as HDF-EOS do so in HDF-EOS Point Point Structure.

HDF-EOS The Hierarchical Data Format - Earth Observing System (HDF-EOS) is the scientific data format standard
selected by NASA as the baseline standard for the Earth Observing System (EOS). HDF-EOS is an extension
of HDF and uses HDF library calls as its underlying basis. Version 4.1r1 of HDF is used. The library and tools
are written in C language and a Fortran interface is provided. See [?].

HDF-EOS can be used for different data models within ESMF. Regular gridded data are supported by HDF-EOS
Grid Structures, while HDF-EOS Point Structure covers unstructured grid and observational data.

GRIB GRIdded Binary (GRIB) is the standard gridded data format from the World Meteorological Organization
(WMO). GRIB is a general purpose, bit-oriented data exchange format. Most NWP centers use GRIB for all the
files produced from its analyses and forecasts. Since the GRIB standard does not specify standard API, NWP
centers use a variety of software to process GRIB files.

The GRIB format used in ESMF shall be configurable, and shall allow the creation of files which conform to
the NCEP standard usage.

IEEE Binary Streams A natural way for a machine to represent data is to use a native binary data representation.
There are two choices of ordering of bytes (so-called Big Endian and Little Endian), and a lot of ambiguity
in representing floating point data. The latter, however, is specified, if IEEE Floating Point Standard 754 is
satisfied ([?], [?]). It is desirable to be able to use efficient native representation, and optionally provide ESMF
metadata on a companion file using for example XML [?].

GrADS The Grid Analysis and Display System (GrADS) is popular visualization software widely used by the earth
science modeling communinity (http://grads.iges.org/grads/). GrADS can read COARDS compliant NetCDF
and HDF files, as well as IEEE binary and GRIB files provided an appropriate companion metadadata file is
provided (in GrADS parlance these are refered to as control files). Files produced by the ESMF are intended to
be GrADS redable, and the ESMF shall produce GrADS control files upon request.

177

BUFR Binary Universal Form of Represantation of the meteorological data (BUFR) is a self-descriptive format for
observational data transmission introduced by the World Meteorological Organization [?]. The form and content
of data contained in a BUFR message are described within BUFR message itself. In addition, BUFR provides
condensation, or packing of data.

The BUFR is a table-driven code since the Data Description Section contains a sequence of data descriptors
referring to a set of predefined and internationally agreed tables. Thus, instead of writing all detailed definitions
within a message, one will just write a number identifying a parameter with its descriptions. The BUFR format
used in ESMF shall be configurable, and shall allow the creation of files which conform to the NCEP standard
usage, in which the predefined tables are contained in the file.

Modern data management approaches could potentially provide significant advantages in manipulating data and
have to be carefully studied. For example, ESMWF has created and employed relational-database based Observational
Data Base (ODB) software [?]. However, such complex data management systems are beyond the scope of the basic
ESMF I/O.

1.5 Parallel I/O

The future development of ESMF IO facility will require further optimization with an expected increase in IO amount
over the next few years. Two major factors contrubuting to the increase in I/O intensity are:

- Enhancement in model resolution;

- Increase in I/O frequency.

We also expect significant increase in amount of of satellitte data, although amount of I/O related to observational data
is not comparable with amount of gridded I/O which drives our performance analysis.

There are two aspects of parallel IO:

- How dataset distributed among multiple processors can be written to a single file efficiently;

- How single file can be distributed accross multiple physical discs and IO channels.

There are several possibilities to perform IO in parallel ([?]):

Single-threaded IO. A single process acquires all the data and writes them out. The features of hardware and OS
are used to distribute the data over multiple chanels and, possibly, to muliple disks.

Multithreaded, multi-fileset IO Many processes write to multiple independent files. These files may be assembled
later. Since each of the processes operates with its file logically independently, we can again rely on the hardware
and OS to operate concurrently with multiple chanels and multiple disks.

Multithreaded/Single-fileset IO. Many processes write to a single file. Although this approach is the most desirable
one, its implementation is the most complicated. Since it requires concurrent access to the file by multiple
processes, it can be implemented within the ESMF I/O only when such functionality is provided by underlying
I/O library.

Multithreaded IO offers a simple way to stripe the data accross as many IO channels and disk channels as are
available [?, ?, ?]. Parallel IO implemented in GFDL ([?]) supports parallel writing to single or multiple files. It
supports NetCDF and binary data formats.

1.6 Synchronous and asynchronous IO

ESMF shall provide an asynchronous option for all ESMF IO models. It shall provide async read and write operations,
the capability to wait on individual or groups of I/O operations, and query functions for the state of an operation.

178

1.7 Location

Input/Output (IO) is part of the ESMF Infrastructure. It will provide efficient utilities to input/output gridded data and
observational data to and from the disk. A standard API will allow manipulation of multiple standard formats.

1.8 Scope

ESMF IO is meant to be used for standard API and underlying implementation, providing input and outut of gridded
data and observational data streams to and from the disk in multiple standard formats. I/O with different levels of
parallelism have to be provided.

179

2 IO requirements

The following are requirements for IO operations and are in addition to the applicable general ESMF requirements
(see ESMF General Requirements document, section 8.1.3).

IO1 General IO requirements

IO1.1 Establish ESMF metadata conventions

A set of metadata conventions on gridded data on structured and unstuctured grids, as well as observational data has
to be determined within ESMF. The ESMF metadata conventions shall be based on the NetCDF Climate-Forecast
(CF) Metadata Convensions [?], extending it for unstructured gridded data as well as for observational data defined on
location streams.

Priority: 1
Source: DAO, NCEP-GSM, NCEP-SSI, NSIPP, CAM-EUL, CLM, CCSM-CPL, POP, CICE, MIT
Status: Proposed
Verification: Document inspection

IO1.2 Provide automatic generation of metadata

As an option, provide automatic generation of metadata for gridded data on structured and unstuctured grids, as well
as observational data covered by ESMF metadata conventions. This requirement shall cover all supported formats.

Priority: 1
Source: DAO, NCEP-GSM, NCEP-SSI, CAM-EUL, CLM, CCSM-CPL, POP, CICE, MIT
Status: Proposed
Verification: Unit test

IO1.3 Provide generation of companion metadata file

Upon request, a companion metadata file, including the specified ESMF metadata, shall be provided for all supported
formats.

Priority: 1
Source: DAO, NCEP-GSM, NCEP-SSI
Status: Proposed
Verification: Unit test

IO1.4 Provide generation of GrADS control file

Upon request, a companion GrADS file, including the specified ESMF metadata, shall be provided for IEEE binary
and GRIB files.

Priority: 1
Source: DAO, NCEP-GSM, NCEP-SSI
Status: Proposed
Verification: Unit test

180

IO2 IO requirements for supporting different data formats

IO2.1 Reading and writing netCDF files for structured gridded data

ESMF has to provide interface and software to read and write netCDF files for structured gridded data covered by
ESMF metadata conventions.

Priority: 1
Source: DAO, NSIPP, CAM-EUL, CLM, CCSM-CPL, POP, CICE, MIT
Status: Proposed
Verification: Unit test.

IO2.2 Reading and writing netCDF files on unstructured grids

ESMF has to provide interface and software to read and write netCDF files for data on unstructured grids covered by
ESMF metadata conventions.

Priority: 2
Source: DAO, NSIPP, MIT
Status: Proposed
Verification: Unit test.

IO2.3 Reading and writing netCDF files for observational data

ESMF has to provide interface and software to read and write netCDF files for observational data covered by ESMF
metadata conventions.

Priority: 2
Source: DAO, NSIPP, MIT
Status: Proposed
Verification: Unit test.

IO2.4 Reading and writing netCDF files using DODS

ESMF has to provide interface and software to read and write netCDF files for data covered by ESMF metadata
conventions over the Internet, using DODS.

Priority: 1
Source: DAO, NSIPP, MIT
Status: Proposed
Verification: Unit test.
Notes: The I/O ought to be extensible to other URI based systems.

IO2.5 Reading and writing HDF4 files for structured gridded data

ESMF has to provide interfaces and software to read and write HDF4 files for structured gridded data covered by
ESMF metadata conventions.

181

Priority: 1
Source: DAO
Status: Proposed
Verification: Unit test.

IO2.6 Reading and writing HDF4 files for data on unstructured grids

ESMF has to provide interfaces and software to read and write HDF4 files for data on unstructured grids covered by
ESMF metadata conventions.

Priority: 1
Source: DAO
Status: Proposed
Verification: Unit test.

IO2.7 Reading and writing HDF4 files for observational data

ESMF has to provide interfaces and software to read and write HDF4 files for observational data covered by ESMF
metadata conventions.

Priority: 1
Source: DAO
Status: Proposed
Verification: Unit test.

IO2.8 Reading and writing HDF5 files for structured gridded data

ESMF has to provide interfaces and software to read and write HDF5 files for structured gridded data covered by
ESMF metadata conventions.

Priority: 2
Source: DAO
Status: Proposed
Verification: Unit test.

IO2.9 Reading and writing HDF5 files for data on unstructured grids

ESMF has to provide interfaces and software to read and write HDF5 for data on unstructured grids covered by ESMF
metadata conventions.

Priority: 2
Source: DAO
Status: Proposed
Verification: Unit test.

IO2.10 Reading and writing HDF5 files for observational data

ESMF has to provide interfaces and software to read and write HDF5 files for data for observational data covered by
ESMF metadata conventions.

182

Priority: 2
Source: DAO
Status: Proposed
Verification: Unit test.

IO2.11 Reading and writing HDF-EOS files for structured gridded data

ESMF has to provide interfaces and software to read and write HDF-EOS files for structured gridded data covered by
ESMF metadata conventions.

Priority: 1
Source: DAO
Status: Proposed
Verification: Unit test.

IO2.12 Reading and writing HDF-EOS files for data on unstructured grids

ESMF has to provide interfaces and software to read and write HDF-EOS files for data on unstructured grids covered
by ESMF metadata conventions.

Priority: 1
Source: DAO
Status: Proposed
Verification: Unit test.

IO2.13 Reading and writing HDF-EOS files for observational data

ESMF has to provide interfaces and software to read and write HDF-EOS files for observational data covered by
ESMF metadata conventions.

Priority: 1
Source: DAO
Status: Proposed
Verification: Unit test.

IO2.14 Reading and writing GRIB files for structured gridded data

ESMF has to provide interfaces and software to read and write GRIB files for structured gridded data covered by
ESMF metadata conventions.

Priority: 1
Source: NCEP-GSM, NCEP-SSI
Status: Proposed
Verification: Unit test.
Notes: Although GRIB1 is currently in operational use at NCEP, it is proposed that ESMF will support GRIB2
format assuming transition in the next two years.

183

IO2.15 Reading and writing GRIB files for data on unstructured grids

ESMF has to provide interfaces and software to read and write GRIB files for data on unstructured grids covered by
ESMF metadata conventions.

Priority: 3
Source:
Status: Proposed
Verification: Unit test.
Notes: Although GRIB1 is currently in operational use at NCEP, it is proposed that ESMF will support GRIB2
format assuming transition in the next two years.

IO2.16 Reading and writing native binary files

ESMF has to provide interfaces and software to read and write native binary files for structured gridded data, data on
unstructured grids, and observational data covered by ESMF metadata conventions, for each machine accompaniied
by XML metadata for data covered by ESMF metadata conventions, assuming that the computer architecture supports
the IEEE 754 Floating Point Standard.

Priority: 2
Source: DAO, NCEP-GSM, NCEP-SSI, NSIPP, CAM-EUL, CLM, CCSM-CPL, POP, CICE, MIT
Status: Proposed
Verification: Unit test.
Notes: XML metadata should be specified. Possibility of BIG ENDIAN and LITTLE ENDIAN byte ordering
should be taken into account. A byte swap and specified byte style facility is needed (MIT).

IO2.17 Reading and writing BUFR files

ESMF has to provide interfaces and software to read and write BUFR files for observational data covered by ESMF
metadata convensions.

Priority: 1
Source: DAO, NCEP-SSI (milestone)
Status: Proposed
Verification: Unit test.
Notes: Limitations on types of data, etc.

IO3 Parallel I/O requirements

IO3.1 Single-threaded IO of distributed data

ESMF should provide single-threaded IO of distributed data when a single process acquires all the data from other
processors and writes them to the disk or read data from the disk and passes them to other processes.

Priority: 1
Source: DAO, NCEP-GSM, NCEP-SSI, NSIPP, CAM-EUL, CLM, CCSM-CPL, MIT
Status: Proposed
Verification: Unit test.

184

IO3.2 Multi-threaded IO of distributed data to a multiple files

ESMF should provide multi-threaded IO of distributed data when each process reads data from and writes data to an
independent file.

This include fast reading and writing independent temporary files by processors using high-speed disks.

Priority: 1
Source: DAO, NCEP-SSI, NSIPP, MIT
Status: Proposed
Verification: Unit test.

IO3.3 Multi-threaded read of distributed data from a single file

ESMF should provide multi-threaded read of distributed data when each process reads data from the the same file.

Priority: 1
Source: NCEP-GSM, NCEP-SSI, DAO, NSIPP, CAM-EUL, CLM, CCSM-CPL, POP, CICE, MIT
Status: Proposed
Verification: Unit test. Note The ESMF I/O may provide this functionality only when it is enabled by underly-
ing library.

IO3.4 Multi-threaded write of distributed data to a single file

ESMF should provide multi-threaded write of distributed data to the same file.

Priority: 2
Source: NCEP-GSM, NCEP-SSI, DAO, NSIPP, CAM-EUL, CLM, CCSM-CPL, POP, CICE, MIT
Status: Proposed
Verification: Unit test. Note The ESMF I/O may provide this functionality only when it is enabled by under-
lying library - otherwise it should provide a status bit to indicate the operation is not possible i.e. it shouldn’t
crash!

IO3.5 Synchronous and asynchronous IO

ESMF shall provide an asynchronous option for all ESMF IO models. It shall provide async read and write operations,
the capability to wait on individual or groups of I/O operations, and query functions for the state of an operation.

Priority: 2
Source: DAO, NSIPP
Status: Proposed
Verification: Unit test.

Reference Material

[1] Earth system modeling framework. http://www.esmf.ucar.edu, 2002.

[2] A. Arakawa. Computational design for long-term numerical integration of the equations of atmospheric motion.
J. Comp. Phys., 1:119–143, 1966.

[3] V. Balaji. Parallel numerical kernels for climate models. In ECMWF, editor, ECMWF Teracomputing Workshop.
World Scientific Press, 2001.

185

[4] R. Heikes and D. A. Randall. Numerical Integration of the Shallow-water Equations of a Twisted Icosahedral
Grid. Part I: Basic Design and Results of Tests. Monthly Weather Review, 123:1862–1880, 1995.

[5] P.W. Jones. First- and second-order conservative remapping schemes for grids in spherical coordinates. Monthly
Weath. Rev., 127:2204–2210, 1999.

[6] D. Majewski, D. Liermann, P. Prohl, B. Ritter, M. Buchhold, T. Hanisch, G. Paul, and W. Wergen. The Oper-
ational Glbal Icosahedral-Hexagonal Gridpoint Model GME: Description and High-Resolution Tests. Monthly
Weather Review, 130:319–338, 2002.

[7] Ross J. Murray. Explicit generation of orthogonal grids for ocean models. J. Comp. Phys., 126:251 – 273, 1996.

[8] M. Rancic, R.J. Purser, and F. Mesinger. A global shallow-water model using an expanded spherical cube:
Gnomonic versus conformal coordinates. Quart. J. Roy. Meteor. Soc., 122:959 – 982, 1996.

[9] Wiegers, K. E. Software Requirements. Microsoft Press, 1999.

[10] Womack, B., Higgins, G. Software Engineering Support of the Third Round of Scientific Grand Challenge
Investigations. General Requirements Analysis. NASA/CT Internal Document, 2002.

186

Part XV

Glossary

IO1 Glossary

This glossary defines terms used in Earth system modeling to describe parallel computer architectures, grids and
grid decompositions, and numerical and computational methods. While some of the concepts in the glossary may
eventually appear as computational objects, many will not. The goal here is not to define a framework design or an
object model but simply to achieve a common language.

Accumulator A facility for collecting and averaging data values. Generally accumulators are associated with tempo-
ral averaging, although they might be associated with other weighted averaging operations.

Address space A standard term to refer to the memory seen by a computer program that it can write to directly using
simple language primitives.

Alarm An event that occurs at a particular time (or set of times). It is like an alarm on a real alarm clock except that
in order to determine whether it is "ringing", an alarm is "read" by an explicit application action.

Addressable node A set of processors that are capable of addressing the same set of blocks of physical memory.

Application A coherent computational entity run as a single executable or set of communicating executables. It
typically consists of a set of interacting components.

Background grid A background grid associates each point in a location stream with a location on a grid. A single
grid cell may contain zero or more location stream points.

Bundle A bundle refers to a set of fields that are associated with the same physical grid and distributed in a similar
fashion across the same physical axes. Fields within a bundle may be staggered differently and may have
different dimensions.

Calendar interval A period of time specified in calendar-based units that may be used to increment or decrement
time instants. One year and three months is an example of a calendar interval. Since mathematical opera-
tions involving calendar intervals may be ambiguously defined – for example, incrementing January 31 in the
Gregorian calendar by one month – default behavior must be carefully specified.

Cell A physical location that is specified by both its extent (vertices) and nominal central location, and is associated
with a single integer index value or a set of integer index values (e.g. (i) for 1-d, (i,j) for 2-d, (i,j,k) for 3d).

Clock A clock tracks the passage of time and reports the current time instant, like a real clock. However, most clocks
used in ESMF components have a key difference to a real clock. Clocks in an ESMF component are generally
stepped forward by the component, as an explicitly coded time step within the overall component.

Component A large-scale computational entity associated with a particular physical process or computational func-
tion, such as a land model. Components may be generic or user-supplied. See also gridded component, coupler
component.

Compute resource Something that appears as a physical or virtual computer resource. Example of compute resources
are a CPU, a network connection, a communication API, a protocol, a particular network fabric or a piece of
computer memory.

Coupler component A component that includes all data and actions needed to enable communication between two
or more other components.

187

Data dependency The property of a computational operator that defines the data indices required to perform the
computation at a point. For instance, a forward differencing operation in X at � �	��
 ! has a dependency on
� �
 � �
 ! .

Data transpose Rearrangement of data arrays between two distributed grids sharing the same global domain.

Day of year The day number in the calendar year. January 1 is day 1 of the year. Day of year expressed in a floating
point format is used to express the day number plus the time of day. For example, assuming a Gregorian
calendar:

date day of year
10 January 2000, 6Z 10.25
31 December 2000, 18Z 366.75

Distributed grid A distributed grid defines the decomposition of the global index space across the layout and methods
on the indexed data.

Distribution The function that expresses the relationship between the indices in a distributed grid and the elements
in a layout.

Domain decomposition The act of grid distribution: creating a layout; and associating gridpoints with the layout.
The dimensionality of the domain decomposition is the dimensionality of the associated layout.

Exact The word exact is used to denote entities, such as time instants and time intervals, for which truncation-free
arithmetic is required.

Exchange grid A grid whose vertices are formed by the intersection of the vertices of two overlying grids. Each cell
in the exchange grid overlies exactly one cell in each grid of the exhange.

Exchange packets The data exchanged by components. Exchange packets may or may not contain contiguous data,
and may contain both field and other forms of data.

Exclusive domain The set of indices whose data is exclusively and definitively updated by a particular PE.

Executable A parallel program that is under independent control by the operating system.

Export state The data and metadata that a component can make available for exchange with other components. This
may be data at a physical boundary (e.g land-atmosphere interface) or in other cases, it might be the entire model
state. See also restart state, import state.

Field A field is a physical quantity defined within a region of space. A field includes a grid and any metadata necessary
for a full description of the field data.

Functionality Class A functionality class is a body that accomplishes a given function, such as I/O. It may contain
several different classes or extend over multiple framework layers. Functionality classes are described in the
ESMF Architecture Document.

Generic component A generic component is one supplied by the framework. The user is not expected to customize
or otherwise modify it. See also user component.

Generic transform A generic transform is a operation supplied by the framework, for example, a method that con-
verts gridded data from one supported physical grid and/or decomposition to another using a specified technique.
See also user transform.

Global physical grid A global physical grid contains physical information about the entire, undecomposed domain.
No distributed grid need be associated with a global physical grid.

Global domain The global range of indices of data points.

188

Global reduction Reduction operations (sum, max, min, etc.) on data defined on a distributed grid. See also global
broadcast.

Global broadcast Scatter operations on data defined on a distributed grid. See also global reduction.

Grid The discrete division of space associated with a particular coordinate system. A grid contains all physical grid
and memory organization information (via distributed grid and layout) required to manipulate fields, as well as
to create and execute grid transforms.

Grid metrics Terms relating measurements in index space to physical grid quantities like distances and areas.

Grid staggering A descriptor of relative locations of scalar and vector data on a structured grid. On different stag-
gered grids, vector data may lie at cell faces or vertices, while scalar data may lie in the interior. The staggered
locations are often written in a notation like � �
 �� �

 �� ! to describe the offset of a corner with respect to the
cell � �	��
 ! .

Grid topology Description of data connectivities in index space.

Grid union The formation of a new grid by taking the union of the vertices of two input grids.

Gridded component A component that is associated with one or more grids. No requirements may be placed on the
physical content of a gridded component’s data or on the nature of its computations.

Halo The points in the data domain outside the local domain.

Halo update Halo points are associated with other PEs’ local domains, and the halo update operation involves syn-
chronization of some or all halo points with other PEs.

Import state The data and metadata that a component requires from other components in order to run. See also export
state, restart state.

Index An integer value associated with a set of coordinates that describe a cell or location in physical space.

Index space The space implied by a set of indices. An index space has a defined dimensionality and connectivity.

Index space location A location within index space. A index space location may be fractional. See also physical
location.

Layout A layout specifies a PE list, decomposition strategy (thread and process), and the dimensionality and connec-
tivity of the decomposition. Multiple distributed grids may be defined per layout.

Local domain This includes the exclusive domain, as well as the points with whom the exclusive points have data
dependencies.

Local physical grid The portion of a physical grid associated with a local domain.

Location stream A list of locations with no assumed relationship between these locations. The elements of a location
stream are assumed to share the same data items and metadata, though some elements may have blank entries
for particular data or attributes.

Logically rectangular grid A grid in which sequential indices are physically adjacent, and in which the extent of
each index is independent of the other indices.

Loose bundle A loose bundle consists of fields whose data is not contiguous in memory.

Mask A field marking a span within a larger grid.

Memory domain The portion of memory associated with an local domain. The memory domain is always at least as
large as the local domain.

189

Memory node A set of processors sharing equal flat access to a block of physical memory.

MPMD Multiple Program Multiple Datastream. Multiple executables, any of which could itself be an SPMD exe-
cutable, executing independently within an application.

No-leap calendar Every year uses the same months and days per month as in a non-leap year of a Gregorian calendar.

Packed bundle A packed bundle is arranged so that field data is contiguous in memory.

Partition In a multi-threaded application, the subset of a computational domain that is associated with a logically in-
dependent sequence of operations. The logical independence requirement is so that partitions may be scheduled
as separable concurrent tasks.

PE Short for processing element.

PE list A list of processor IDs associated with a component. See also layout.

Physical grid A physical grid contains a variety of information on the location in physical space and physical metrics
(area, grid lengths, etc.) of various grid points.

Physical location The point in physical space to which data pertain.

Platform The processor hardware, operating system, compiler and parallel library that together form a unique com-
pilation target.

Processing node A set of processors to which an operating system scheduler is capable of assigning to a single job.

Restart state The component data that is needed for an exact restart. This can include, in addition to a physical state,
time information, static field data, metadata and control information.

Scheduler An operating system component that assigns system resources (processors, memory, CPU time, I/O chan-
nels, etc.) to executables.

Span The physical extent associated with a grid.

SPMD Single Program Multiple Datastream. A single executable, possibly with many components (representing for
example the atmosphere, the ocean, land surface) executing serially or concurrently.

System time Time spent doing system tasks such as I/O or in system calls. May also include time spent running other
processes on a multiprocessor system.

Time instant Generic name for an absolute time and date specification. A time instant is made up of a time and date
and an associated calendar. It may include a time zone. “Jan 3rd 1999, 03:30:24.56s, UTC” is one example of a
time instant.

Time interval A time interval is the period between any two time instants, measured in units, such as days, seconds,
and fractions of a second, that are not associated with a specific calendar. Time intervals may be negative.
The periods 2 days and 10 seconds, 86400 and 1/3 seconds and 31104000.75 seconds are all examples of time
intervals. Mathematical operations such as addition, multiplication and subdivision can be applied to time
intervals.

User component A component that is customized or written by the user. See also generic component.

User time Processor time actually spent executing a process’s code.

User transform A user-supplied method that is used to extend framework capabilities beyond generic transforms.

Wall clock time Elapsed real-world time (i.e. difference between start time minus stop time).

190

