[bookmark: _96icwn5umt3v][bookmark: _GoBack]Environmental Equivalence: Structure
EE Version 2
(final draft from August 30, 2016)

NOTE THIS IS A DRAFT AND WILL BE SUPERSEDED BY THE FINAL ENVIRONMENTAL EQUIVALENCE 2 REPORT

All portions of the production suite shall be divided into self-contained groups of code, scripts and other files, hereafter referred to as a package. Packages have associated modulefiles usable by the unix “module” command, that set environment variables needed to install or use the package. These packages shall exist in Subversion in such a way that they can be recompiled from source, and if needed, ported to other platforms. These packages shall follow a specific directory structure and versioning system as described below.
The production suite consists of two types of packages:
1. MODELS - a set of jobs to run in a workflow, connected to each other by input and output data, including all called scripts and executables, static (not changing from run to run) input data, and files needed to build the executables
2. LIBRARIES - a set of one or more of the following: scripts, utility executables, environment variables, and compiled libraries (dynamic or statically linked) that are intended to be used by models.
Each package must be exactly one of the above; a model cannot be a library and a library cannot be a model. There are two defining differences:
1. A library cannot include jobs as part of a workflow.
2. A package cannot refer to another model’s directories.
[bookmark: _9ksvw7qwlkou]Modularity
Each package must exist in a single vertical structure with the naming convention:
<package>.v<version>
where <version> is defined in the Versioning section. For a model, the <package> is the model’s NET or RUN. For a library, it is the library’s name.
The directory structure underneath can be found in the section “Package Installation Area”.
In general, each model should be able to be built, rebuilt and run without using files outside of that package, except system executables and system libraries. The only exceptions to this rule (external files that can be used) are:
1. Dynamic data, which generally changes from run to run.
2. Third-party libraries are available through modulefiles.

3. Shared code, environment variables, or scripts in library packages as defined and discussed in Libraries.
a. On WCOSS, these are available through modulefiles in $NWROOT/modulefiles and $NWROOT/lib/modulefiles
Workflow components shall never be shared between packages; that is, the top-level j-jobs and above must always be local to the component. Rather, sharing code is intended to provide parts of the implementation of lower-level parts of the workflow.
Sharing such code among multiple models has a distinct disadvantage of multiple versions that need to be kept and supported. Therefore, only shared code in a library package that is purportedly backwards-compatible is allowed to be used in other models by simply pointing to the external vertical structure. This is so that that an older version can be eliminated during an upgrade of the model using it with minor testing.
In other cases, any shared code or potentially shared code must be copied into the vertical structure of the main model before delivering the model to NCO. If a package contains code copied from another source, then the maintenance of that copy is the responsibility of the package owner or developer, not the originator of the code.
	If a package contains code copied from another source, then the maintenance of that copy is the responsibility of the package owner or developer, not the originator of the code.

[bookmark: _8ggarm39cuz3]Modulefiles
Each package must include modulefiles that set environment variables necessary to build, run, or link against the system. If a package requires another package (such as g2 requiring g2tmpl to link) then that should be represented by adding a dependency in the modulefiles.
In general, a package may have one or two modulefiles:
1. A modulefile for use while installing the package
2. A modulefile for running the package’s programs, using its scripts, or linking against the module’s libraries.
Ideally, there should be only one modulefile that does both, but we recognize that is not always possible. Variables required in a modulefile are discussed in detail in the Libraries and Models sections.
[bookmark: _zazdp2xfp6k6]Package Installation Area
As previously stated, a package must exist in a directory with this name:
<package>.v<version>
Within that directory, there may be several other subdirectories depending on the purpose of the package (library or model):
	jobs/ - location of a model’s j-job files (mandatory for all models)
	scripts/ - high-level logic scripts, usually one per j-job
	ush/ - low-level logic scripts, scripting libraries, or utility scripts
	doc/ - documentation
	exec/ - compiled, executable programs (not scripts; those go in ush or scripts)
	src/ (preferred) or sorc/ - package source code for packages with compiled components
	modulefiles/ - unix module files
	dictionaries/ - input dictionary files
	parm/ - input text files
	fix/ - input binary files
	ecf/ - ECflow files
	gempak/ - input gempak data
	lib/<name>/<version>/ - compiled library <name> files for version <version>
		(see Compiled Libraries for details on the meanings of <italics> here)
		lib<name><ver><precision>.<extension> - library for the default build target
		<compiler_[OPT]>/ - subdirectories with libraries for other build targets
		include/ - files needed from library at compile time
		data/ - data files needed for libraries, such as during unit testing
		src/ - source code for the library
[bookmark: _7xfz0fedmtve]J-Job Files in jobs/
The jobs/ directory must contain j-job files which are the top-level, package-specific file in each of the tasks of a model’s workflow. Since this is only for the model’s workflow, a library must never have a jobs/ directory.
The j-jobs files should follow this naming convention:
	J<MODEL>_<TASK>
Where:
<MODEL> - is the NET or RUN for the model and
<TASK> - is the capitalized name of the task the j-job runs. In the rare case of j-job files that are shared among multiple tasks (such as ensembles) this should be a name typical of or descriptive of the tasks that will use it.
[bookmark: _yvrol818xtcg]Source Code in sorc/
The subdirectory structure within src/ is allowed to vary. However, all source code for a given executable must be in one directory named as described below. The only exception is code that from a compiled library linked to the executable should be in that library’s source directory. All source code for executable exec/<package><progname> must be in:
	src/…subdirectories.../<package><progname>.<language>d/
where <package><progname> is the name of the program within the exec directory, and <language> is “c” for C or C++ programs and “f” for Fortran programs. If the program uses a mix of various languages, the choice of “c” versus “f” is at the developer’s discretion, but should be descriptive of the dominant language used in the program. If there are multiple programs built from a source directory, the directory name should be descriptive of the programs within.
[bookmark: _5uz7cxqpbt73]Executables in exec/
Executables within a package’s directory must follow this naming convention:
	exec/<package>_<progname>
where <package> is the name of the overall package, and <progname> is the name of the program within the package. Since package is in the directory name above now, <package> is optional in the executable filename.
[bookmark: _rrqumeekcxmx]Versioning
[bookmark: _gv311za4qb9c]Production or Release Versions
Production releases use a dotted decimal system for version specification, and have the following format:
Version 10.5.7
Where
· “10” is the major version number
· “5” is the minor version number
· “7” is the release number
It is left to the SPA team and model developers to decide the exact meaning of incrementing each number. However, this guidance should be considered:
· Major version numbers (10) should be incremented only for changes that fundamentally change the nature of the model or could cause major differences in the forecast. Examples are adding a new coupled component or doubling the resolution.
· Minor version numbers (5) should be incremented for substantive changes that should be considered by downstream users due to possible change in forecast skill, delivery time or other important considerations. Any change relative to a code hand-off to NCO is considered substantive (see the next section).
· Release numbers (7) should be incremented for changes that do not change the intent of the system, but may fix problems that prevented the model from achieving that intent. In other words, bug fixes. After hand-off to NCO, only NCO may increment this number for a given major/minor number pair (see the next section).
[bookmark: _v7rpp1h7u7tr]Development Versioning after Code Hand-Off
Any hand-off of code to NCO is considered substantive and mandates a minor revision number change. That is, any hand-off version must have a release number of 0. Plus, any changes relative to a version that was handed off to NCO are considered substantive and mandate a minor or major revision number change unless the change is specifically by request of NCO to assist in the production upgrade. Hence, it is mandatory to update the major (first number) or minor (second number) version for any new developments or patches that are not directly related to the code hand-off.
Example 1: Version 10.4.7 is to be prepared for hand-off to NCO. The act of handing off increments the version to 10.5.0 because any hand-off must have a release number of 0.
Example 2: Version 10.5.0 of a package is handed off to NCO. A change is developed to a physics package to allow an alternative (non-operational) configuration to run. That fix is not given to NCO, or rejected by NCO to avoid potential risks. That update has to be in version 10.6.0 or 11.0.0, NOT in 10.5.1.
Example 3: Version 10.5.0 of a package is handed off to NCO. One J-job needs minor changes to be compatible with an upgraded version of ecFlow. The developer makes the change by NCO’s request, and provides it to NCO. NCO names the version 10.5.1. Note that the developer did NOT decide the version number; the NCO SPA named the version 10.5.1
Example 4: Version 10.5.0 of a package is handed off to NCO. A developer wants to correct a typo in a comment, in a file that is not even used. NCO does not want or need this change, so it is not added to operations. When the typo in the comment is corrected in development, the version becomes 10.6.0 and NCO is allowed to continue their development of 10.5.x, albeit with a typo in a comment in a file that is not even used.
	Any code hand-off must have a version with a release number of 0. After a code hand-off of version X.Y.0 any new developments relative to that version that are not part of the same implementation upgrade, must increment the major (X) or minor (Y) version number. Only NCO may increment the release (Z) of the handed-off X.Y.

[bookmark: _c23bjm43ss6c]Subversion Usage
[bookmark: _qma6hsrjhdc7]Allowed Subversion Usage Patterns
Trunks, branches and tags in the Subversion repository follow two different usage patterns which must be decided in advance of their creation:
1. Developmental or code hand-off branches and tags.
2. Production or pre-production archive branches and tags.
Developmental and code-handoff branches shall never contain the output or intermediate results of a compilation process. They shall never contain the output of any automatic process that may need to be rerun during porting or re-compilation. This requirement is out of necessity to avoid accidental recompiles during development, code hand-off or porting.
NCO uses production or pre-production branches to archive executables and other build process intermediate output. This is dangerous since it can lead to accidentally not recompiling the system, and has led to operational failures in the past. This EE2 document recognizes the complexity of switching to a more suitable binary file archiving system, and allows such a practice to continue despite the risks involved. The build process rules, described later in this document, mitigate this risk by requiring the developer to provide a “clean build” option to eliminate all output and intermediate files created during the build process.
[bookmark: _o4zypbkx9rsc]Subversion Aspect of Code Hand-Off Process
Code can be handed off and stored in Subversion in two directions:
1. Code given to the SPA from the code manager, and
2. updates from the SPA given back to the code manager to allow development to track production needs.

	During hand-off and pre-implementation work, code and scripts shall exist in two evolving directories (branches or trunks) in NCEP repositories: one for NCO and one for developers handing off code.
Hand-off shall be from tags of those branches or trunks.

At a minimum the following must be done as an iterative process (loop):
1. The code manager shall store the pre-implementation model in the EMC repository in a branch or trunk that will track the progress of that model towards implementation.
a. This trunk or branch shall be a developmental or code hand-off branch as described in the previous section, and hence shall not contain any executables or intermediate build system output.
2. Upon code hand-off to the SPA, the code manager shall provide a tag in the EMC repository:
a. Any modifications made by EMC shall be relative to the version provided by the SPA.
b. Such tags shall be copied from the branch or trunk described in step 1, at a particular Subversion revision number.
3. The SPA shall store the pre-implementation model in the NCO Subversion repository in a branch. That branch shall be used to track progress towards implementation.
a. If possible, this branch should follow the developmental or code-handoff usage pattern as described in the previous section, and hence should not contain executables or intermediate build system output.
b. If the SPA stores such files in the NCO repository, then the development code manager shall remove them before copying them into the development repository
4. The SPA shall hand back any significant changes to the code manager by creating a tag of that revision of the branch including the full model name and version number.
a. The version number shall be higher than any used in the past for the same model.
5. The code manager shall take the changes, and merge to the branch described in step 1, removing any executables or other build system intermediate output.
[bookmark: _7qpkjc6qaso8]Installation Process and Related Documentation
The entire module should be installable from the Subversion tag provided by NCO to the code manager or from the code manager to NCO. There are generally seven steps to this installation process:
1. Subversion checkout.
2. Load modulefiles
3. Obtaining large binary files from other locations, such as HPSS.
4. Clean the directory tree.
5. Build the system.
6. Install executables and libraries.
7. Run unit tests to verify installation.
How to do subversion checkouts (step 1) or run unit tests (step 7) is described in other sections. This section describes steps 2 through 6.
[bookmark: _xx6c85xfwq0z]Build System
All four of those steps shall be automated; a single command must perform all work for one of the steps. The preferred methods are POSIX sh or POSIX Make, but other systems are allowed. However, those build systems can only use programs that are already installed on the production machine.
In addition, any package build system provided must follow these requirements:
1. CLEAN command - The build system must have a “clean” command that will delete all build system intermediate and final outputs. This includes, but is not limited to, executables, libraries, object files, automatically-generated code, Fortran module files, listing files, and anything else produced during the build process.
2. BUILD command - The build system must have a “build” command that will build all executables, libraries or other files required for execution. It must do this in a single command without manual intervention. However, it must also:
a. Provide a way to recompile a single executable or library or small group of executables or libraries without rerunning the entire “clean” and “build” steps.
b. Provide a way to override the choice or configuration of compilers, linkers, or other automated build system programs easily, and in a centralized manner. That is, the developer or SPA must not have to modify a hundred files to change build options for a hundred programs. Instead, there should be a single file or command, or a small number of files or commands, to make such modification.
3. DEBUG BUILD command - Provide a “debug build” option that enables extra checks within the code or via compiler or library options to enable debugging of the package.
4. INSTALL command - The build system must have an “install” command that is separate from the “build” command. This “install” command shall install executables, libraries, module files, and other build system output in their final operational locations. It shall also verify that all installed programs are present and perform minimal verification on contents, such as checking if the files are empty or an incorrect format.
5. TEST command - The build system must have a “test” command that runs any simple unit tests on compiled libraries and simple utility programs. If the package does not contain such libraries or utilities, then it is acceptable for the test command to do nothing.
6. Logging - all steps of the build system must log all modules, significant environment variables and build commands executed. Log files must be accessible by the community.
7. Dependencies - If the build system or running applications in the package are dependent on other packages in the production suite, this must be clearly marked in the modulefile and clearly described in documentation.
8. Modifiability - Any configuration changes required to change optimizations, or modify installation structure, must be clear, and well documented.
9. Determinism - If one runs the clean step, the build step and the install step, in that order, multiple times, the same output must be produced by each iteration of the build system (except for timestamps).
10. Portability - The package must contain instructions on how to make common modifications required to port it to new compilers or systems on which it does not yet run.
[bookmark: _d670t4g5kpio]Obtaining Large Binary Files
Large numerical models may require input files that are difficult to generate and do not change frequently. These are generally referred to as “large fix files.” Large fix files push the limits of Subversion’s versioning system and increase Subversion server hardware requirements. Some packages include large fix files in their repositories anyway, while others prefer to store the fix files in other locations. This EE2 document allows either approach. However, if the package obtains fix files from an external location, we place specific requirements:
1. The module must provide a way of obtaining the large fix files automatically in a single command.
2. The module must provide a way of validating the large fix files, such as via a checksum. This validation must be automatic and be done by a single command.
[bookmark: _ih83r23xnb91]Models
[bookmark: _9wwg7brafhwa]NET and RUN
The NCEP production suite uses two strings to subcategorize models for dataflow and workflow related reasons: NET and RUN. No two models are allowed to share any pair of NET and RUN values. Examples:
	Model
	NET
	RUN

	gdas
	gfs
	enkf, gdas

	gfs
	gfs
	gfs

	narre
	rap
	narre

	rap
	rap
	rap, rap_e, rap_eh, rap_p

	rtma
	rtma
	akrtma, gurtma, hirtma, prrtma, rtma, rtma2p5

	wave_glw
	wave
	glw

	wave_gwes
	wave
	gwes

	wave_multi_1
	wave
	multi_1

	nam
	nam
	nam, ndas

[bookmark: _egu7ttmwbfjb]Data Locations
Production defines a number of directories with specific purposes for trading data between models, and to customers. These directories must exist in parallel and developmental workflows but may have different names. However, the same environment variables must be used at the top level job in each workflow to specify directory locations. Locations in this section are described using POSIX sh style string specifications, relative to variables defined in the NCEP Implementation Standards document.
Models may only write to:
$DATAROOT/$jobid (temporary directory)
$PCOMROOT/$NET
or (for models with multiple values of RUN) $PCOMROOT/$RUN (sp?)
$GESROOT/$envir/DIR
where DIR is any of $NET, $NET.$PDY, or (for models with multiple values of RUN) $RUN, $RUN.$PDY (see also below)
$COMROOT/output/$envir/today (stdin/stderr)
$COMROOT/logs/jlogfile (through pre-approved production utilities)
$COMOUT (see below)

	In particular, it is never allowed to write to /dcom (except for the ingest suite) or to the installation directories in $NWROOT (including the model’s own directories).

All model output intended to remain after the jobs complete should be written to the model’s $COMOUT directory, which should default in the J-job to:
$COMROOT/$NET/$envir/$RUN.$PDY
Each model is allowed to write only to directories corresponding to its own values of NET and RUN (strict vertical structure). Reading is allowed from directories with any values of NET and RUN, however, it must be done through the use of a variable $COMINmodel defined in the J-job, for example:
COMINgdas=${COMINgdas:-${COMROOTp2:?}/gfs/$envir}
Similarly, reading from other models’ nwges directories is allowed through the use of $GESINmodel variables.
All the “ROOT” variables are set in the workflow management system before calling the J-job. They must not be modified in J-jobs and must be used in J-jobs (not in any other place) to define input/output directories. It is not allowed to define these directories explicitly (without using the “ROOT” variables).
[bookmark: _bcb0e2cm0o1l]Output Filenames
Output in the model’s com input and output directories, pcom directory and other publicly visible directories must follow NCEP File Naming conventions. Any development parallels or retrospectives must follow the same naming conventions used by the corresponding operational model, or any new naming proposed in the next operational upgrade. If the NCEP file naming conventions are unsuitable, the developer should propose updates to the NCEP Implementation Standards document.

	Development workflows should use the same file names as are used in productions or the proposed new names for the next operational upgrade.

[bookmark: _qvsoprp6anr6]Libraries
Libraries are packages that are meant to be linked to executables at build or run time, or scripting libraries that are used by scripts at runtime. They differ from models in that they do not contain jobs that are run as part of a workflow. This section provides additional rules to ensure usability of libraries. Libraries shall follow all requirements given in the rest of this document unless stated otherwise in this section. In particular, as for applications, for both local libraries and third party libraries, all steps of the build system must log all modules, significant environment variables and build commands executed, and log files must be accessible by the community.

[bookmark: _m5emmvftrsvy]What is a Library?
In the context of this document, a library is:
1. COMPILED LIBRARIES - Compiled code that is linked into an executable either at runtime (static libraries) or at execution time (dynamic libraries). Examples are the g2 (Fortran code), g2c (C code) or esmf (C++ and Fortran code).
2. GROUPS OF SMALL PROGRAMS - Groups of small executables intended to be used by shell or scripting languages, such as the executable parts of the “prod_util” module.
3. SCRIPTING LIBRARIES - Shell or scripting files intended to be included or sourced by model automation suites. Examples are the Python “produtil” module within HWRF, and the shell parts of the “prod_util” module.
4. ENVIRONMENT VARIABLE COLLECTIONS - Collections of environment variables, such as the “prod_envir” module.
5. A COMBINATION OF THE ABOVE - Some libraries may contain more than one of the above list of types. For example, prod_util contains a number of small programs and is also a scripting library.
	A library package should never contain jobs to be run as part of a workflow. If it does, it is a model, not a library.

[bookmark: _329aqeliy6i6]Modulefile and Environment Requirements
These requirements are in addition to any requirements in the NCEP Implementation Standards document, which describes a number of additional environment and modulefile requirements.
[bookmark: _w71wozq6svpf]Library Modulefiles
[bookmark: _96f9t9if0bux]Library modulefiles must set the environment variables listed below to point to the library’s vertical structure. As much as possible, library modulefiles should be standardized to enable portability. Library modulefiles are grouped into two categories, daily use modulefiles and installation use modulefiles. Installation use modulefiles or scripts may contain code for structure and naming convention verification, while daily use modulefiles contain only application of environmental settings.
[bookmark: _co7ok6snn8av]Compiled Libraries
Compiled libraries must provide additional environment variables with the following syntax:
<LIB_NAME>_<TYPE of files><PRECISION><ADD_ATTRIBUTES>	
for instance: ‘‘SP_LIBd’‘ or ‘‘SIGIO_INC4’‘.
At the very least, at least one of each of these must be provided: “LIB”, “INC” and “SRC” for <TYPE of files>.
	<LIB_NAME>
	Capitalized library name (e.g. BUFR, SP, IP, etc.)

	<LIB_NAME>_VER
	The version of the library consistent consistent with the release or pre-release number, as described in the Versioning section.

	<TYPE of files>
	“SRC” - location directory of source code
“INC” - location directory of files needed at compile time, such as Fortran module files and C or C++ header files.
“LIB” - location of file required at linking time
“LNK” - linker flags string

	<PRECISION>
	Letter or number indicating precision used to compile, if relevant:
4 - 32-bit integers and reals
8 - 64-bit integers and reals
d - 64-bit integers and 32-bit reals

	<ADD_ATTRIBUTES>
	Additional attributes about the library such as library-specific information or future additions to this naming convention.

[bookmark: _5wiok6730xyx]Groups of Small Programs
To specify program locations, these libraries should do at least one of the following:
1. Prepend an executable directory to the standard $PATH variable, if absolutely necessary, or
2. Set a list of environment variables that describe each executable’s location independently. (For example, $WGRIB is the location of the “wgrib” program, whereas “$MPISERIAL” tells where the “mpiserial” program resides.)
In addition, any other environment changes required to use the programs should be applied or required by modulefile dependencies.
[bookmark: _rydrcmt8l5kh]Scripting Libraries
Scripting libraries should follow the general module scripting requirements. Hence,
$USH<name> - location of utility scripts and scripting libraries for module <name>, which should point to a directory with the name “ush”
$EX<name> - location of high-level logic scripts for package <name> which should point to a directory with the name “scripts”
Language-specific variables - some languages, such as Perl or Python, have language-specific environment variables to set “search paths” to search for library components. If this is relevant to the library in question, it is acceptable to set such environment variables.
There should never be a JOB<name> directory since the j-job level scripts are intended to run a job, something a library should never do.
[bookmark: _9c0kvu7mb5n]Environment Variable Libraries
Libraries of environment variables only need a modulefile and documentation. An example of such a library is the NCEP prod_envir module, which points to locations of common directories.
[bookmark: _820m3dsibdmb]Third Party Libraries
Third-party libraries are libraries that are not developed by NCEP Central Operations, the vendor of the NCEP or NOAA supercomputers, nor the developers of the NOAA modules. Common examples are the NetCDF data storage library and the Portable Network Graphics library (libpng).
[bookmark: _pe81jqatfjkk]Seek Other Means of Support First
If possible, the third-party libraries should be installed and maintained by the vendor or support staff of the NOAA computers in question (WCOSS, Theia, Jet, GAEA, etc.) However, if vendor and system administrators are either unable or unwilling to support the library, the developer may negotiate another option with NCEP Central Operations. If, in the judgement of NCEP Central Operations, the developer of a module is able to support the third party library, then that library may be bundled with the module. For example, one may have a custom LAPACK implementation embedded within an ocean model if that is approved.
The approval process is not described here since it is outside the scope of the Environmental Equivalence standard.
[bookmark: _b99y869i1eo]Limitations on Third-Party Libraries
ACTIVELY DEVELOPED AND SUPPORTED - Third-party libraries must be actively developed and supported by someone. “Dead” projects that have no developers are not allowed, unless the developer transitioning the library to operations is willing and able to take over development and support of the library.
SECURE - Due to requirements outside the scope of this document, any third-party library deemed by NOAA Security to be insecure cannot be used in operations. For that reason, such third-party libraries shall not be used in any development, until the security issue is resolved.
[bookmark: _q0b8w94dxkl4]Naming and Installation
Naming, versioning, and installation conventions may follow the third-party library’s own conventions if that is deemed necessary for installation or maintenance. However,
1. Libraries with compiled components must have a build system that meets requirements in the Build System section.
2. The third-party library must still have a modulefile.
3. The modulefile must still follow the Modulefile and Environment Requirements, except
a. Compiled libraries can follow their own naming conventions (e.g. libnetcdf.a)
This ensures the installation of the library can be redone by another user, vetted by others or ported to another machine.
